Mechanism of genetic exchange in american trypanosomes


Mechanism of genetic exchange in american trypanosomes

Play all audios:


ABSTRACT The kinetoplastid Protozoa are responsible for devastating diseases1. In the Americas, _Trypanosoma cruzi_ is the agent of Chagas' disease—a widespread disease transmissible


from animals to humans (zoonosis)—which is transmitted by exposure to infected faeces of blood-sucking triatomine bugs2. The presence of genetic exchange in _T. cruzi_ and in _Leishmania_ is


much debated3,4. Here, by producing hybrid clones, we show that _T. cruzi_ has an extant capacity for genetic exchange. The mechanism is unusual and distinct from that proposed for the


African trypanosome, _Trypanosoma brucei_5. Two biological clones6 of _T. cruzi_ were transfected to carry different drug-resistance markers7,8, and were passaged together through the entire


life cycle. Six double-drug-resistant progeny clones, recovered from the mammalian stage of the life cycle, show fusion of parental genotypes, loss of alleles, homologous recombination, and


uniparental inheritance of kinetoplast maxicircle DNA. There are strong genetic parallels between these experimental hybrids and the genotypes among natural isolates of _T. cruzi._ In this


instance, aneuploidy through nuclear hybridization results in recombination across far greater genetic distances than mendelian genetic exchange. This mechanism also parallels genome


duplication9,10. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution


Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS _HOP1_ AND _HAP2_ ARE CONSERVED COMPONENTS OF THE MEIOSIS-RELATED MACHINERY REQUIRED FOR SUCCESSFUL MATING IN _LEISHMANIA_


Article Open access 07 November 2023 COLONIZATION AND GENETIC DIVERSIFICATION PROCESSES OF _LEISHMANIA INFANTUM_ IN THE AMERICAS Article Open access 29 January 2021 A PHASED GENOME ASSEMBLY


OF A COLOMBIAN _TRYPANOSOMA CRUZI_ TCI STRAIN AND THE EVOLUTION OF GENE FAMILIES Article Open access 24 January 2024 REFERENCES * Cook, G. C. & Zumla, A. (eds) _Manson's Tropical


Diseases_ (Saunders, London, 2003) * World Health Organisation. _Control of Chagas Disease_ (World Health Organisation Technical Report Series 905, Geneva, 2002) Google Scholar  * Machado,


C. A. & Ayala, F. J. Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of _Trypanosoma cruzi_. _Proc. Natl Acad. Sci. USA_ 98, 7396–7401 (2001)


Article  ADS  CAS  Google Scholar  * Gibson, W. C. & Stevens, J. R. Genetic exchange in the trypanosomatidae. _Adv. Parasitol._ 43, 1–46 (1999) Article  CAS  Google Scholar  * Bingle, L.


E., Eastlake, J. L., Bailey, M. & Gibson, W. C. A novel GFP approach for the analysis of genetic exchange in trypanosomes allowing the _in situ_ detection of mating events.


_Microbiology_ 147, 3231–3240 (2001) Article  CAS  Google Scholar  * Carrasco, H. J., Frame, I. A., Valente, S. A. & Miles, M. A. Genetic exchange as a possible source of genomic


diversity in sylvatic populations of _Trypanosoma cruzi_. _Am. J. Trop. Med. Hyg._ 54, 418–424 (1996) Article  CAS  Google Scholar  * Gibson, W. C. & Bailey, M. Genetic exchange in


_Trypanosoma brucei_: evidence for meiosis from analysis of a cross between drug-resistant transformants. _Mol. Biochem. Parasitol._ 64, 241–252 (1996) Article  Google Scholar  * Stothard,


J. R., Frame, I. A. & Miles, M. A. Genetic diversity and genetic exchange in _Trypanosoma cruzi_: dual drug-resistant ‘progeny’ from episomal transformants. _Mem. Inst. Oswaldo Cruz_ 94


Suppl. 1, 189–193 (1999) Article  Google Scholar  * Ohno, S. _Evolution by Gene Duplication_ (Springer, Berlin, 1970) Book  Google Scholar  * Knight, J. All genomes great and small. _Nature_


417, 374–376 (2002) Article  ADS  CAS  Google Scholar  * Brisse, S., Barnabe, C. & Tibayrenc, M. Identification of six _Trypanosoma cruzi_ phylogenetic lineages by random amplified


polymorphic DNA and multilocus enzyme electrophoresis. _Int. J. Parasitol._ 30, 35–44 (2000) Article  CAS  Google Scholar  * Mendonca, M. B. et al. Two main clusters within _Trypanosoma


cruzi_ zymodeme 3 are defined by distinct regions of the ribosomal RNA cistron. _Parasitology_ 124, 177–184 (2002) Article  CAS  Google Scholar  * Oliveira, R. P. et al. Probing the genetic


population structure of _Trypanosoma cruzi_ with polymorphic microsatellites. _Proc. Natl Acad. Sci. USA_ 95, 3776–3780 (1998) Article  ADS  CAS  Google Scholar  * Miles, M. A. et al. Do


radically dissimilar _Trypanosoma cruzi_ strains (zymodemes) cause Venezuelan and Brazilian forms of Chagas disease? _Lancet_ 1, 1338–1340 (1981) Article  CAS  Google Scholar  * Gaunt, M. W.


& Miles, M. A. The ecotopes and evolution of triatomine bugs (Triatominae) and their associated trypanosomes. _Mem. Inst. Oswaldo Cruz_ 95, 557–565 (2000) Article  CAS  Google Scholar 


* Tibayrenc, M. & Ayala, F. J. The clonal theory of parasitic protozoa: 12 years on. _Trends Parasitol._ 18, 405–410 (2002) Article  CAS  Google Scholar  * McDaniel, J. P. & Dvorak,


J. A. Identification, isolation, and characterization of naturally-occurring _Trypanosoma cruzi_ variants. _Mol. Biochem. Parasitol._ 57, 213–222 (1993) Article  CAS  Google Scholar  *


Kelly, J. M. Genetic transformation of parasitic protozoa. _Adv. Parasitol._ 39, 227–270 (1997) Article  CAS  Google Scholar  * Wilkinson, S. R. et al. The _Trypanosoma cruzi_ enzyme TcGPXI


is a glycosomal peroxidase and can be linked to trypanothione reduction by glutathione or tryparedoxin. _J. Biol. Chem._ 277, 17062–17071 (2002) Article  CAS  Google Scholar  * Robello, C.,


Gamarro, F., Castanys, S. & Alvarez-Valin, F. Evolutionary relationships in _Trypanosoma cruzi_: molecular phylogenetics supports the existence of a new major lineage of strains. _Gene_


246, 331–338 (2000) Article  CAS  Google Scholar  * MacLeod, A. et al. Minisatellite marker analysis of _Trypanosoma brucei_: reconciliation of clonal, panmictic, and epidemic population


genetic structures. _Proc. Natl Acad. Sci. USA_ 97, 13442–13447 (2000) Article  ADS  CAS  Google Scholar  * Spratt, B. G. & Maiden, M. C. J. Bacterial population genetics, evolution and


epidemiology. _Phil. Trans. R. Soc. Lond. B_ 354, 701–710 (1999) Article  CAS  Google Scholar  * Chamnanpunt, J., Shan, W. X. & Tyler, B. M. High frequency mitotic gene conversion in


genetic hybrids of the oomycete _Phytophthora sojae_. _Proc. Natl Acad. Sci. USA_ 98, 14530–14535 (2001) Article  ADS  CAS  Google Scholar  * Cruz, A. K., Titus, R. & Beverley, S. M.


Plasticity in chromosome number and testing of essential genes in _Leishmania_ by targeting. _Proc. Natl Acad. Sci. USA_ 90, 1599–1603 (1993) Article  ADS  CAS  Google Scholar  * Gaunt, M.


W. & Miles, M. A. A molecular clock for the insects dates the origin of the insects and accords with paleontological and biogeographic landmarks. _Mol. Biol. Evol._ 19, 748–761 (2002)


Article  CAS  Google Scholar  * Miles, M. A. in _Protocols in Molecular Parasitology_ (ed. Hyde, J. E.) 15–28 (Humana, Totowa, New Jersey, 1992) Google Scholar  * Thompson, J. D., Gibson, T.


J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. CLUSTAL _ X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. _Nucleic Acids


Res._ 25, 4876–4882 (1997) Article  CAS  Google Scholar  * Salminen, M. O., Carr, J. K., Burke, D. S. & McCutchan, F. E. Identification of breakpoints in intergenotypic recombinants of


HIV type 1 by bootscanning. _AIDS Res. Hum. Retro._ 11, 1423–1425 (1995) Article  CAS  Google Scholar  * Holmes, E. C., Worobey, M. & Rambaut, A. Phylogenetic evidence for recombination


in dengue virus. _Mol. Biol. Evol._ 16, 405–409 (1999) Article  CAS  Google Scholar  * Dopazo, J., Dress, A. & Vonhaeseler, A. Split decomposition—a technique to analyse viral evolution.


_Proc. Natl Acad. Sci. USA_ 90, 10320–10324 (1993) Article  ADS  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We thank the Wellcome Trust for financial support, D. Conway for


valuable advice, and S. Wilkinson, S. Obado and J. Kelly for gifts of primers and comments on the manuscript. AUTHOR INFORMATION Author notes * Nidia Acosta & Antonieta Rojas de Arias


Present address: Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asuncion, Asuncion, Paraguay * Iain A. Frame Present


address: The Wellcome Trust, 183 Euston Road, London, NW1 2BE, UK * J. Russell Stothard Present address: Department of Infectious Disease Epidemiology, Imperial College, London, W2 1PG, UK


AUTHORS AND AFFILIATIONS * Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, WC1E 7HT, London, UK Michael W. Gaunt, Matthew Yeo, 


Iain A. Frame, Martin C. Taylor, Susana Solis Mena, Paul Veazey, Graham A. J. Miles & Michael A. Miles * Department of Zoology, The Natural History Museum, Cromwell Road, SW7 5BD,


London, UK J. Russell Stothard * Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela Hernan J. Carrasco Authors * Michael W. Gaunt View author publications You can


also search for this author inPubMed Google Scholar * Matthew Yeo View author publications You can also search for this author inPubMed Google Scholar * Iain A. Frame View author


publications You can also search for this author inPubMed Google Scholar * J. Russell Stothard View author publications You can also search for this author inPubMed Google Scholar * Hernan


J. Carrasco View author publications You can also search for this author inPubMed Google Scholar * Martin C. Taylor View author publications You can also search for this author inPubMed 


Google Scholar * Susana Solis Mena View author publications You can also search for this author inPubMed Google Scholar * Paul Veazey View author publications You can also search for this


author inPubMed Google Scholar * Graham A. J. Miles View author publications You can also search for this author inPubMed Google Scholar * Nidia Acosta View author publications You can also


search for this author inPubMed Google Scholar * Antonieta Rojas de Arias View author publications You can also search for this author inPubMed Google Scholar * Michael A. Miles View author


publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Michael A. Miles. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare


that they have no competing financial interests. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION: APPENDICES 1-8 (PDF 375 KB) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS


ARTICLE CITE THIS ARTICLE Gaunt, M., Yeo, M., Frame, I. _et al._ Mechanism of genetic exchange in American trypanosomes. _Nature_ 421, 936–939 (2003). https://doi.org/10.1038/nature01438


Download citation * Received: 11 October 2002 * Accepted: 14 January 2003 * Issue Date: 27 February 2003 * DOI: https://doi.org/10.1038/nature01438 SHARE THIS ARTICLE Anyone you share the


following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative