Emergence and pandemic potential of swine-origin h1n1 influenza virus


Emergence and pandemic potential of swine-origin h1n1 influenza virus

Play all audios:


ABSTRACT Influenza viruses cause annual epidemics and occasional pandemics that have claimed the lives of millions. The emergence of new strains will continue to pose challenges to public


health and the scientific communities. A prime example is the recent emergence of swine-origin H1N1 viruses that have transmitted to and spread among humans, resulting in outbreaks


internationally. Efforts to control these outbreaks and real-time monitoring of the evolution of this virus should provide us with invaluable information to direct infectious disease control


programmes and to improve understanding of the factors that determine viral pathogenicity and/or transmissibility. Access through your institution Buy or subscribe This is a preview of


subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 51 print issues and online access $199.00 per year only


$3.90 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout


ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS GENETIC AND ANTIGENIC


EVOLUTION OF H1 SWINE INFLUENZA A VIRUSES ISOLATED IN BELGIUM AND THE NETHERLANDS FROM 2014 THROUGH 2019 Article Open access 28 May 2021 NOVEL REASSORTANT SWINE H3N2 INFLUENZA A VIRUSES IN


GERMANY Article Open access 31 August 2020 POTENTIAL PANDEMIC RISK OF CIRCULATING SWINE H1N2 INFLUENZA VIRUSES Article Open access 13 June 2024 REFERENCES * Kobasa, D. et al. Aberrant innate


immune response in lethal infection of macaques with the 1918 influenza virus. _Nature_ 445, 319–323 (2007) ADS  CAS  PubMed  Google Scholar  * Morens, D. M., Taubenberger, J. K. &


Fauci, A. S. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. _J. Infect. Dis._ 198, 962–970 (2008) PubMed


  PubMed Central  Google Scholar  * Taubenberger, J. K., Reid, A. H., Krafft, A. E., Bijwaard, K. E. & Fanning, T. G. Initial genetic characterization of the 1918 “Spanish” influenza


virus. _Science_ 275, 1793–1796 (1997)THIS IS AN IMPORTANT PAPER THAT DESCRIBES THE DECIPHERING OF THE GENOMIC SEQUENCE OF THE 1918 PANDEMIC INFLUENZA VIRUS. CAS  PubMed  Google Scholar  *


Reid, A. H., Fanning, T. G., Hultin, J. V. & Taubenberger, J. K. Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. _Proc. Natl Acad. Sci. USA_ 96, 1651–1656


(1999) ADS  CAS  PubMed  Google Scholar  * Neumann, G. et al. Generation of influenza A viruses entirely from cloned cDNA. _Proc. Natl Acad. Sci. USA_ 96, 9345–9350 (1999)THIS PAPER


DESCRIBES THE ARTIFICIAL GENERATION OF INFLUENZA VIRUSES, A BREAKTHROUGH TECHNOLOGY THAT ALLOWS THE MOLECULAR CHARACTERIZATION OF INFLUENZA VIRUSES AND THE GENERATION OF INFLUENZA VIRUS


VACCINES. ADS  CAS  PubMed  Google Scholar  * Tumpey, T. M. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. _Science_ 310, 77–80 (2005)THIS IS A PIVOTAL


PAPER THAT DESCRIBES THE RE-CREATION OF THE 1918 PANDEMIC INFLUENZA VIRUS. ADS  CAS  PubMed  Google Scholar  * Kash, J. C. et al. Genomic analysis of increased host immune and cell death


responses induced by 1918 influenza virus. _Nature_ 443, 578–581 (2006) ADS  CAS  PubMed  PubMed Central  Google Scholar  * de Jong, M. D. et al. Fatal outcome of human influenza A (H5N1) is


associated with high viral load and hypercytokinemia. _Nature Med._ 12, 1203–1207 (2006)THIS IMPORTANT PAPER DESCRIBES HIGH LEVELS OF CYTOKINES IN HUMANS INFECTED WITH HIGHLY PATHOGENIC


AVIAN H5N1 VIRUSES. CAS  PubMed  Google Scholar  * Kobasa, D. et al. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. _Nature_ 431, 703–707


(2004) ADS  CAS  PubMed  Google Scholar  * Tumpey, T. M. et al. Existing antivirals are effective against influenza viruses with genes from the 1918 pandemic virus. _Proc. Natl Acad. Sci.


USA_ 99, 13849–13854 (2002) ADS  CAS  PubMed  Google Scholar  * Tumpey, T. M. et al. Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. _Proc.


Natl Acad. Sci. USA_ 101, 3166–3171 (2004) ADS  CAS  PubMed  Google Scholar  * Watanabe, T. et al. Viral RNA polymerase complex promotes optimal growth of 1918 virus in the lower respiratory


tract of ferrets. _Proc. Natl Acad. Sci. USA_ 106, 588–592 (2009) ADS  CAS  PubMed  Google Scholar  * Van Hoeven, N. et al. Human HA and polymerase subunit PB2 proteins confer transmission


of an avian influenza virus through the air. _Proc. Natl Acad. Sci. USA_ 106, 3366–3371 (2009) ADS  CAS  PubMed  Google Scholar  * Geiss, G. K. et al. Cellular transcriptional profiling in


influenza A virus-infected lung epithelial cells: the role of the nonstructural NS1 protein in the evasion of the host innate defense and its potential contribution to pandemic influenza.


_Proc. Natl Acad. Sci. USA_ 99, 10736–10741 (2002) ADS  CAS  PubMed  Google Scholar  * McAuley, J. L. et al. Expression of the 1918 influenza A virus PB1–F2 enhances the pathogenesis of


viral and secondary bacterial pneumonia. _Cell Host Microbe_ 2, 240–249 (2007) CAS  PubMed  PubMed Central  Google Scholar  * Nakajima, K., Desselberger, U. & Palese, P. Recent human


influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950. _Nature_ 274, 334–339 (1978).THIS PAPER ESTABLISHED THAT THE RUSSIAN INFLUENZA IN 1977 WAS GENETICALLY


CLOSELY RELATED TO VIRUSES CIRCULATING IN HUMANS IN THE 1950S. ADS  CAS  PubMed  Google Scholar  * Subbarao, K. et al. Characterization of an avian influenza A (H5N1) virus isolated from a


child with a fatal respiratory illness. _Science_ 279, 393–396 (1998) ADS  CAS  PubMed  Google Scholar  * Claas, E. C. et al. Human influenza A H5N1 virus related to a highly pathogenic


avian influenza virus. _Lancet_ 351, 472–477 (1998) CAS  PubMed  Google Scholar  * Smith, G. J. et al. Emergence and predominance of an H5N1 influenza variant in China. _Proc. Natl Acad.


Sci. USA_ 103, 16936–16941 (2006) ADS  CAS  PubMed  Google Scholar  * Chen, H. et al. Establishment of multiple sublineages of H5N1 influenza virus in Asia: Implications for pandemic


control. _Proc. Natl. Acad. Sci. USA_ 103, 2845–2850 (2006) ADS  CAS  PubMed  Google Scholar  * Guan, Y. et al. Emergence of multiple genotypes of H5N1 avian influenza viruses in Hong Kong


SAR. _Proc. Natl Acad. Sci. USA_ 99, 8950–8955 (2002) ADS  CAS  PubMed  Google Scholar  * Li, K. S. et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in


eastern Asia. _Nature_ 430, 209–213 (2004)THIS PAPER DESCRIBES THE FREQUENT REASSORTMENT EVENTS OF HIGHLY PATHOGENIC AVIAN H5N1 VIRUSES THAT LED TO THE EMERGENCE OF THE DOMINANT ‘GENOTYPE


Z’. ADS  CAS  PubMed  Google Scholar  * Ducatez, M. F. et al. Avian flu: multiple introductions of H5N1 in Nigeria. _Nature_ 442, 37 (2006) ADS  CAS  PubMed  Google Scholar  * Tran, T. H. et


al. Avian influenza A (H5N1) in 10 patients in Vietnam. _N. Engl. J. Med._ 350, 1179–1188 (2004) PubMed  Google Scholar  * The Writing Committee of the World Health Organization (WHO)


Consultation on Human Influenza A/H5 Avian influenza A (H5N1) infection in humans. _N. Engl. J. Med._ 353, 1374–1385 (2005) Google Scholar  * Chotpitayasunondh, T. et al. Human disease from


influenza A (H5N1), Thailand, 2004. _Emerg. Infect. Dis._ 11, 201–209 (2005) PubMed  PubMed Central  Google Scholar  * Peiris, J. S. et al. Re-emergence of fatal human influenza A subtype


H5N1 disease. _Lancet_ 363, 617–619 (2004).THIS PAPER DESCRIBES THE RE-EMERGENCE OF HUMAN INFECTIONS WITH HIGHLY PATHOGENIC AVIAN H5N1 VIRUSES IN 2003, AND ALSO EMPHASISES THE HIGH


CONCENTRATIONS OF CYTOKINES FOUND IN INFECTED INDIVIDUALS. CAS  PubMed  PubMed Central  Google Scholar  * To, K. F. et al. Pathology of fatal human infection associated with avian influenza


A H5N1 virus. _J. Med. Virol._ 63, 242–246 (2001) CAS  PubMed  Google Scholar  * Chan, M. C. et al. Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human


alveolar and bronchial epithelial cells. _Respir. Res._ 6, 135 (2005) ADS  CAS  PubMed  PubMed Central  Google Scholar  * Cheung, C. Y. et al. Induction of proinflammatory cytokines in human


macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? _Lancet_ 360, 1831–1837 (2002) CAS  PubMed  Google Scholar  * Fraser, C. et al. Pandemic


potential of a strain of influenza A (H1N1): early findings. _Science_ 10.1126/science.1176062 (in the press) * Novel Swine-Origin Influenza A (H1N1) Investigation Team Emergence of a novel


swine-origin influenza A (H1N1) virus in humans. _N. Engl. J Med._ 10.1056/NEJMoa0903810 (in the press)THIS HIGHLY IMPORTANT PAPER PRESENTS THE FIRST SUMMARY OF EPIDEMIOLOGICAL AND


VIROLOGICAL DATA ON THE NEW SWINE-ORIGIN H1N1 VIRUSES. * Rogers, G. N. & Paulson, J. C. Receptor determinants of human and animal influenza virus isolates: differences in receptor


specificity of the H3 hemagglutinin based on species of origin. _Virology_ 127, 361–373 (1983)THIS PAPER ESTABLISHES DIFFERENCES BETWEEN HUMAN AND AVIAN INFLUENZA VIRUSES IN RECEPTOR-BINDING


SPECIFICITY. CAS  PubMed  Google Scholar  * Ito, T. et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. _J. Virol._ 72, 7367–7373 (1998) CAS 


PubMed  PubMed Central  Google Scholar  * Matrosovich, M., Zhou, N., Kawaoka, Y. & Webster, R. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild


aquatic birds have distinguishable properties. _J. Virol._ 73, 1146–1155 (1999) CAS  PubMed  PubMed Central  Google Scholar  * Shinya, K. et al. Avian flu: influenza virus receptors in the


human airway. _Nature_ 440, 435–436 (2006) ADS  CAS  PubMed  Google Scholar  * van Riel, D. et al. H5N1 virus attachment to lower respiratory tract. _Science_ 312, 399 (2006) CAS  PubMed 


Google Scholar  * Nicholls, J. M. et al. Tropism of avian influenza A (H5N1) in the upper and lower respiratory tract. _Nature Med._ 13, 147–149 (2007) CAS  PubMed  Google Scholar  *


Stevens, J. et al. Structure of the uncleaved human H1 hemagglutinin from the extinct 1918 influenza virus. _Science_ 303, 1866–1870 (2004) ADS  CAS  PubMed  Google Scholar  * Tumpey, T. M.


et al. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. _Science_ 315, 655–659 (2007) ADS  CAS  PubMed  Google Scholar  * Gambaryan, A. et al.


Evolution of the receptor binding phenotype of influenza A (H5) viruses. _Virology_ 344, 432–438 (2006) CAS  PubMed  Google Scholar  * Yamada, S. et al. Haemagglutinin mutations responsible


for the binding of H5N1 influenza A viruses to human-type receptors. _Nature_ 444, 378–382 (2006) ADS  CAS  PubMed  Google Scholar  * Auewarakul, P. et al. An avian influenza H5N1 virus


that binds to a human-type receptor. _J. Virol._ 81, 9950–9955 (2007) CAS  PubMed  PubMed Central  Google Scholar  * Stevens, J. et al. Structure and receptor specificity of the


hemagglutinin from an H5N1 influenza virus. _Science_ 312, 404–410 (2006) ADS  CAS  PubMed  Google Scholar  * Kawaoka, Y. & Webster, R. G. Sequence requirements for cleavage activation


of influenza virus hemagglutinin expressed in mammalian cells. _Proc. Natl Acad. Sci. USA_ 85, 324–328 (1988) ADS  CAS  PubMed  Google Scholar  * Subbarao, E. K., London, W. & Murphy, B.


R. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. _J. Virol._ 67, 1761–1764 (1993) CAS  PubMed  PubMed Central  Google Scholar  * Hatta, M., Gao,


P., Halfmann, P. & Kawaoka, Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. _Science_ 293, 1840–1842 (2001) ADS  CAS  PubMed  Google Scholar  * Mehle, A.


& Doudna, J. A. An inhibitory activity in human cells restricts the function of an avian-like influenza virus polymerase. _Cell Host Microbe_ 4, 111–122 (2008) CAS  PubMed  PubMed


Central  Google Scholar  * Rameix-Welti, M. A., Tomoiu, A., Dos Santos Afonso, E., van der Werf, S. & Naffakh, N. Avian influenza A virus polymerase association with nucleoprotein, but


not polymerase assembly, is impaired in human cells during the course of infection. _J. Virol._ 83, 1320–1331 (2009) CAS  PubMed  Google Scholar  * Hatta, M. et al. Growth of H5N1 influenza


A viruses in the upper respiratory tracts of mice. _PLoS Pathog._ 3, e133 (2007) PubMed Central  Google Scholar  * Massin, P., van der Werf, S. & Naffakh, N. Residue 627 of PB2 is a


determinant of cold sensitivity in RNA replication of avian influenza viruses. _J. Virol._ 75, 5398–5404 (2001) CAS  PubMed  PubMed Central  Google Scholar  * Steel, J., Lowen, A. C.,


Mubareka, S. & Palese, P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. _PLoS Pathog._ 5, e1000252 (2009) PubMed  PubMed Central


  Google Scholar  * Li, Z. et al. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. _J. Virol._ 79, 12058–12064 (2005) CAS  PubMed  PubMed Central 


Google Scholar  * Gabriel, G. et al. Differential polymerase activity in avian and mammalian cells determines host range of influenza virus. _J. Virol._ 81, 9601–9604 (2007) CAS  PubMed 


PubMed Central  Google Scholar  * Gabriel, G., Herwig, A. & Klenk, H. D. Interaction of polymerase subunit PB2 and NP with importin α1 is a determinant of host range of influenza A


virus. _PLoS Pathog._ 4, e11 (2008) PubMed  PubMed Central  Google Scholar  * Salomon, R. et al. The polymerase complex genes contribute to the high virulence of the human H5N1 influenza


virus isolate A/Vietnam/1203/04. _J. Exp. Med._ 203, 689–697 (2006) CAS  PubMed  PubMed Central  Google Scholar  * Tarendeau, F. et al. Host determinant residue lysine 627 lies on the


surface of a discrete, folded domain of influenza virus polymerase PB2 subunit. _PLoS Pathog._ 4, e1000136 (2008) PubMed  PubMed Central  Google Scholar  * Kuzuhara, T. et al. Structural


basis of the influenza A virus RNA polymerase PB2 RNA-binding domain containing the pathogenicity-determinant lysine 627 residue. _J. Biol. Chem._ 284, 6855–6860 (2009) CAS  PubMed  PubMed


Central  Google Scholar  * Garcia-Sastre, A. Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. _Virology_ 279, 375–384


(2001) CAS  PubMed  Google Scholar  * Garcia-Sastre, A. et al. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. _Virology_ 252, 324–330 (1998)THIS PAPER


ESTABLISHES THE NS1 PROTEIN AS AN INTERFERON ANTAGONIST. CAS  PubMed  Google Scholar  * Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates.


_Science_ 314, 997–1001 (2006) ADS  CAS  PubMed  Google Scholar  * Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of


TLR7-mediated recognition of single-stranded RNA. _Science_ 303, 1529–1531 (2004) ADS  CAS  PubMed  Google Scholar  * Lund, J. M. et al. Recognition of single-stranded RNA viruses by


Toll-like receptor 7. _Proc. Natl Acad. Sci. USA_ 101, 5598–5603 (2004) ADS  CAS  PubMed  Google Scholar  * Imai, Y. et al. Identification of oxidative stress and Toll-like receptor 4


signaling as a key pathway of acute lung injury. _Cell_ 133, 235–249 (2008) CAS  PubMed  PubMed Central  Google Scholar  * Seo, S., Hoffmann, E. & Webster, R. G. Lethal H5N1 influenza


viruses escape host anti-viral cytokine responses. _Nature Med._ 8, 950–954 (2002) CAS  PubMed  Google Scholar  * Guan, Y. et al. H5N1 influenza: a protean pandemic threat. _Proc. Natl Acad.


Sci. USA_ 101, 8156–8161 (2004) ADS  CAS  PubMed  Google Scholar  * Jiao, P. et al. A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza


viruses in mice. _J. Virol._ 82, 1146–1154 (2008) CAS  PubMed  Google Scholar  * Li, Z. et al. The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. _J. Virol._ 80,


11115–11123 (2006) CAS  PubMed  PubMed Central  Google Scholar  * Obenauer, J. C. et al. Large-scale sequence analysis of avian influenza isolates. _Science_ 311, 1576–1580 (2006) ADS  CAS 


PubMed  Google Scholar  * Jackson, D., Hossain, M. J., Hickman, D., Perez, D. R. & Lamb, R. A. A new influenza virus virulence determinant: the NS1 protein four C-terminal residues


modulate pathogenicity. _Proc. Natl Acad. Sci. USA_ 105, 4381–4386 (2008) ADS  CAS  PubMed  Google Scholar  * Chen, W. et al. A novel influenza A virus mitochondrial protein that induces


cell death. _Nature Med._ 7, 1306–1312 (2001) CAS  PubMed  Google Scholar  * Zamarin, D., Garcia-Sastre, A., Xiao, X., Wang, R. & Palese, P. Influenza virus PB1–F2 protein induces cell


death through mitochondrial ANT3 and VDAC1. _PLoS Pathog._ 1, e4 (2005) PubMed  PubMed Central  Google Scholar  * Mazur, I. et al. The proapoptotic influenza A virus protein PB1–F2 regulates


viral polymerase activity by interaction with the PB1 protein. _Cell. Microbiol._ 10, 1140–1152 (2008) CAS  PubMed  Google Scholar  * Conenello, G. M., Zamarin, D., Perrone, L. A., Tumpey,


T. & Palese, P. A single mutation in the PB1–F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. _PLoS Pathog._ 3, e141 (2007) PubMed Central  Google


Scholar  * Kiso, M. et al. Resistant influenza A viruses in children treated with oseltamivir: descriptive study. _Lancet_ 364, 759–765 (2004) CAS  PubMed  Google Scholar  * Poland, G. A.,


Jacobson, R. M. & Ovsyannikova, I. G. Influenza virus resistance to antiviral agents: a plea for rational use. _Clin. Infect. Dis._ 48, 1254–1256 (2009) PubMed  PubMed Central  Google


Scholar  * Le, Q. M. et al. Avian flu: isolation of drug-resistant H5N1 virus. _Nature_ 437, 1108 (2005) ADS  CAS  PubMed  Google Scholar  * de Jong, M. D. et al. Oseltamivir resistance


during treatment of influenza A (H5N1) infection. _N. Engl. J. Med._ 353, 2667–2672 (2005) ADS  CAS  PubMed  Google Scholar  * Weinstock, D. M., Gubareva, L. V. & Zuccotti, G. Prolonged


shedding of multidrug-resistant influenza A virus in an immunocompromised patient. _N. Engl. J. Med._ 348, 867–868 (2003) PubMed  Google Scholar  * Baz, M., Abed, Y., McDonald, J. &


Boivin, G. Characterization of multidrug-resistant influenza A/H3N2 viruses shed during 1 year by an immunocompromised child. _Clin. Infect. Dis._ 43, 1555–1561 (2006) CAS  PubMed  Google


Scholar  * Ison, M. G., Gubareva, L. V., Atmar, R. L., Treanor, J. & Hayden, F. G. Recovery of drug-resistant influenza virus from immunocompromised patients: a case series. _J. Infect.


Dis._ 193, 760–764 (2006) CAS  PubMed  Google Scholar  * Collins, P. J. et al. Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. _Nature_ 453, 1258–1261


(2008) ADS  CAS  PubMed  Google Scholar  * Gubareva, L. V., Matrosovich, M. N., Brenner, M. K., Bethell, R. C. & Webster, R. G. Evidence for zanamivir resistance in an immunocompromised


child infected with influenza B virus. _J. Infect. Dis._ 178, 1257–1262 (1998) CAS  PubMed  Google Scholar  * Babu, Y. S. et al. BCX-1812 (RWJ-270201): discovery of a novel, highly potent,


orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. _J. Med. Chem._ 43, 3482–3486 (2000) CAS  PubMed  Google Scholar  * Yamashita, M. et al.


CS-8958, a prodrug of the new neuraminidase inhibitor R-125489, shows long-acting anti-influenza virus activity. _Antimicrob. Agents Chemother._ 53, 186–192 (2009) CAS  PubMed  Google


Scholar  * Furuta, Y. et al. _In vitro_ and _in vivo_ activities of anti-influenza virus compound T-705. _Antimicrob. Agents Chemother._ 46, 977–981 (2002) CAS  PubMed  PubMed Central 


Google Scholar  * Sui, J. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. _Nature Struct. Mol. Biol._ 16, 265–273 (2009)


MathSciNet  CAS  Google Scholar  * Belshe, R. B. et al. Live attenuated versus inactivated influenza vaccine in infants and young children. _N. Engl. J. Med._ 356, 685–696 (2007) CAS  PubMed


  Google Scholar  * Treanor, J. J., Campbell, J. D., Zangwill, K. M., Rowe, T. & Wolff, M. Safety and immunogenicity of an inactivated subvirion influenza A (H5N1) vaccine. _N. Engl. J.


Med._ 354, 1343–1351 (2006) CAS  PubMed  Google Scholar  * Bresson, J. L. et al. Safety and immunogenicity of an inactivated split-virion influenza A/Vietnam/1194/2004 (H5N1) vaccine: phase


I randomised trial. _Lancet_ 367, 1657–1664 (2006) CAS  PubMed  Google Scholar  * Lin, J. et al. Safety and immunogenicity of an inactivated adjuvanted whole-virion influenza A (H5N1)


vaccine: a phase I randomised controlled trial. _Lancet_ 368, 991–997 (2006) CAS  PubMed  Google Scholar  * Bernstein, D. I. et al. Effects of adjuvants on the safety and immunogenicity of


an avian influenza H5N1 vaccine in adults. _J. Infect. Dis._ 197, 667–675 (2008) CAS  PubMed  Google Scholar  * Stephenson, I. et al. Antigenically distinct MF59-adjuvanted vaccine to boost


immunity to H5N1. _N. Engl. J. Med._ 359, 1631–1633 (2008) CAS  PubMed  Google Scholar  * Levie, K. et al. An adjuvanted, low-dose, pandemic influenza A (H5N1) vaccine candidate is safe,


immunogenic, and induces cross-reactive immune responses in healthy adults. _J. Infect. Dis._ 198, 642–649 (2008) PubMed  Google Scholar  * Suguitan, A. L. et al. Live, attenuated influenza


A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets. _PLoS Med._ 3, e360 (2006) PubMed  PubMed Central  Google Scholar  * Fan, S. et al. Immunogenicity and


protective efficacy of a live attenuated H5N1 vaccine in nonhuman primates. _PLoS Pathog._ 5, e1000409 (2009) PubMed  PubMed Central  Google Scholar  * Schotsaert, M., De, F. M., Fiers, W.


& Saelens, X. Universal M2 ectodomain-based influenza A vaccines: preclinical and clinical developments. _Expert Rev. Vaccines_ 8, 499–508 (2009) CAS  PubMed  PubMed Central  Google


Scholar  * Mahmood, K. et al. H5N1 VLP vaccine induced protection in ferrets against lethal challenge with highly pathogenic H5N1 influenza viruses. _Vaccine_ 26, 5393–5399 (2008) CAS 


PubMed  Google Scholar  * Gao, W. et al. Protection of mice and poultry from lethal H5N1 avian influenza virus through adenovirus-based immunization. _J. Virol._ 80, 1959–1964 (2006) CAS 


PubMed  PubMed Central  Google Scholar  * Hoelscher, M. A. et al. Development of adenoviral-vector-based pandemic influenza vaccine against antigenically distinct human H5N1 strains in mice.


_Lancet_ 367, 475–481 (2006) CAS  PubMed  PubMed Central  Google Scholar  Download references ACKNOWLEDGEMENTS We apologize to our colleagues whose critical contributions to influenza virus


research could not be cited owing to the number of references permitted. We thank K. Wells for editing the manuscript. We also thank M. Ozawa and others in our laboratories who contributed


to the data cited in this review. Our original research was supported by National Institute of Allergy and Infectious Diseases Public Health Service research grants; by the Center for


Research on Influenza Pathogenesis (CRIP) funded by the National Institute of Allergy and Infectious Diseases (Contract HHSN266200700010C), Grant-in-Aid for Specially Promoted Research, by a


contract research fund for the Program of Founding Research Centers for Emerging and Reemerging Infectious Diseases from the Ministry of Education, Culture, Sports, Science, and Technology,


by grants-in-aid from the Ministry of Health and by ERATO (Japan Science and Technology Agency). G.N. is named as co-inventor on several patents about influenza virus reverse genetics


and/or the development of influenza virus vaccines or antivirals. Y.K. is named as inventor/co-inventor on several patents about influenza virus reverse genetics and/or the development of


influenza virus vaccines or antivirals. Figures 1 and 2 were modified from Orthomyxoviruses: influenza, in Topley and Wilson's Microbiology and Microbial Infections: Virology (Hodder


Arnold, 2005); Fig. 3 was modified from Orthomyxoviruses, in Fields Virology (Lippincott Williams & Wilkins, 2007). AUTHOR CONTRIBUTIONS G.N. wrote the manuscript. T.N. provided the


electron microscopic picture. Y.K. also wrote the manuscript. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison,


Wisconsin 53711, USA, Gabriele Neumann & Yoshihiro Kawaoka * International Research Center for Infectious Diseases,, Takeshi Noda & Yoshihiro Kawaoka * Division of Virology,


Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan Yoshihiro Kawaoka * ERATO Infection-Induced Host Responses Project, Japan


Science and Technology Agency, Saitama 332-0012, Japan Yoshihiro Kawaoka Authors * Gabriele Neumann View author publications You can also search for this author inPubMed Google Scholar *


Takeshi Noda View author publications You can also search for this author inPubMed Google Scholar * Yoshihiro Kawaoka View author publications You can also search for this author inPubMed 


Google Scholar CORRESPONDING AUTHOR Correspondence to Yoshihiro Kawaoka. ETHICS DECLARATIONS COMPETING INTERESTS [Competing Interests: Y.K. has received speaker’s honoraria from Chugai


Pharmaceuticals, Novartis, Sankyo, Toyama Chemical, Wyeth and GlaxoSmithKline; grant support from Chugai Pharmaceuticals, Daiichi Sankyo Pharmaceutical and Toyama Chemical; consulting fee


from Theraclone Sciences and Fort Dodge Animal Health; and is a founder of FluGen. G.N. has received consulting fee from Theraclone Sciences and is a founder of FluGen.] ADDITIONAL


INFORMATION The authors declare competing financial interests: details accompany the full-text HTML version of the paper at www.nature.com/nature. POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG.


1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR FIG. 4 POWERPOINT SLIDE FOR FIG. 5 RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE


THIS ARTICLE Neumann, G., Noda, T. & Kawaoka, Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus. _Nature_ 459, 931–939 (2009). https://doi.org/10.1038/nature08157


Download citation * Received: 12 May 2009 * Accepted: 26 May 2009 * Published: 14 June 2009 * Issue Date: 18 June 2009 * DOI: https://doi.org/10.1038/nature08157 SHARE THIS ARTICLE Anyone


you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the


Springer Nature SharedIt content-sharing initiative