The birth of topological insulators


The birth of topological insulators

Play all audios:


ABSTRACT Certain insulators have exotic metallic states on their surfaces. These states are formed by topological effects that also render the electrons travelling on such surfaces


insensitive to scattering by impurities. Such topological insulators may provide new routes to generating novel phases and particles, possibly finding uses in technological applications in


spintronics and quantum computing. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your


institution Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access


to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our


FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS TOPOLOGICAL SPINTRONICS AND MAGNETOELECTRONICS Article 23 December 2021 PROGRESS AND PROSPECTS IN MAGNETIC TOPOLOGICAL


MATERIALS Article 02 March 2022 OPPORTUNITIES IN TOPOLOGICAL INSULATOR DEVICES Article 10 December 2021 REFERENCES * Haldane, F. D. M. Model for a quantum Hall effect without Landau levels:


condensed-matter realization of the 'parity anomaly'. _Phys. Rev. Lett._ 61, 2015–2018 (1988). Article  ADS  MathSciNet  CAS  Google Scholar  * Murakami, S., Nagaosa, N. &


Zhang, S.-C. Spin-Hall insulator. _Phys. Rev. Lett._ 93, 156804 (2004). Article  ADS  Google Scholar  * Kane, C. L. & Mele, E. J. Z2 topological order and the quantum spin Hall effect.


_Phys. Rev. Lett._ 95, 146802 (2005). THIS PAPER EXPLAINS THE THEORETICAL REQUIREMENTS FOR A NON-MAGNETIC MATERIAL TO BE A 2D TOPOLOGICAL INSULATOR, WITH A QUANTUM SPIN HALL EFFECT. Article


  ADS  CAS  Google Scholar  * Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. _Science_ 314, 1757–1761


(2006). Article  ADS  CAS  Google Scholar  * König, M. et al. Quantum spin Hall insulator state in HgTe quantum wells. _Science_ 318, 766–770 (2007). THIS PAPER REPORTS THE FIRST


EXPERIMENTAL OBSERVATION OF A 2D TOPOLOGICAL INSULATOR THAT HAS A QUANTUM SPIN HALL EFFECT. Article  ADS  Google Scholar  * Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in


three dimensions. _Phys. Rev. Lett._ 98, 106803 (2007). Article  ADS  Google Scholar  * Moore, J. E. & Balents, L. Topological invariants of time-reversal-invariant band structures.


_Phys. Rev. B_ 75, 121306(R) (2007). Article  ADS  Google Scholar  * Roy, R. Topological phases and the quantum spin Hall effect in three dimensions. _Phys. Rev. B_ 79, 195322 (2009).


Article  ADS  Google Scholar  * Ran, Y., Zhang, Y. & Vishwanath, A. One-dimensional topologically protected modes in topological insulators with lattice dislocations. _Nature Phys._ 5,


298–303 (2009). Article  ADS  CAS  Google Scholar  * Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. _Nature_ 452, 970–974 (2008). BY USING ARPES EXPERIMENTS,


THIS STUDY OBSERVED A 3D TOPOLOGICAL INSULATOR, THE THEORETICAL PREDICTIONS FOR WHICH WERE MADE IN REFS 6,7,8. Article  ADS  CAS  Google Scholar  * Hsieh, D. et al. Observation of


unconventional quantum spin textures in topological insulators. _Science_ 323, 919–922 (2009). Article  ADS  CAS  Google Scholar  * Xia, Y. et al. Observation of a large-gap


topological-insulator class with a single Dirac cone on the surface. _Nature Phys._ 5, 398–402 (2009). Article  ADS  CAS  Google Scholar  * Zhang, H. et al. Topological insulators in Bi2Se3,


Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. _Nature Phys._ 5, 438–442 (2009). REFERENCES 12 AND 13 REPORT EXPERIMENTS AND THEORY ON NEXT-GENERATION TOPOLOGICAL INSULATOR


MATERIALS, WHICH HAVE A LARGE BANDGAP AND A SINGLE SURFACE DIRAC CONE; THESE ARE THE MOST PROMISING MATERIALS FOR FUTURE EXPERIMENTS. Article  ADS  CAS  Google Scholar  * Chen, Y. L. et al.


Experimental realization of a three-dimensional topological insulator, Bi2Te3 . _Science_ 325, 178–181 (2009). Article  ADS  CAS  Google Scholar  * Castro Neto, A. H., Guinea, F., Peres, N.


M., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. _Rev. Mod. Phys._ 81, 109–163 (2009). Article  ADS  Google Scholar  * Roushan, P. et al. Topological surface


states protected from backscattering by chiral spin texture. _Nature_ 460, 1106–1109 (2009). Article  ADS  CAS  Google Scholar  * Alpichshev, Z. et al. STM imaging of electronic waves on the


surface of Bi2Te3: topologically protected surface states and hexagonal warping effects. Preprint at <http://arxiv.org/abs/0908.0371> (2009). * Zhang, T. et al. _Experimental


demonstration of the topological surface states protected by the time-reversal symmetry_. Preprint at <http://arxiv.org/abs/0908.4136> (2009). Book  Google Scholar  * Nomura,


K., Koshino, M. & Ryu, S. Topological delocalization of two-dimensional massless Dirac fermions. _Phys. Rev. Lett._ 99, 146806 (2007). Article  ADS  Google Scholar  * Anderson, P. W.


Absence of diffusion in certain random lattices. _Phys. Rev._ 109, 1492–1505 (1958). Article  ADS  CAS  Google Scholar  * Li, J. et al. Topological Anderson insulator. _Phys. Rev. Lett._


102, 136806 (2009). Article  ADS  Google Scholar  * Groth, C. W. et al. Theory of the topological Anderson insulator. _Phys. Rev. Lett._ 103, 196805 (2009). Article  ADS  CAS  Google Scholar


  * Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. _Nature_ 460, 1101–1105 (2009). Article  ADS  CAS  Google Scholar  * Seradjeh, B., Moore, J.


E. & Franz, M. Exciton condensation and charge fractionalization in a topological insulator film. _Phys. Rev. Lett._ 103, 066402 (2009). Article  ADS  CAS  Google Scholar  * Peng, H. et


al. _Aharonov–Bohm interference in topological insulator nanoribbons_. Preprint at <http://arxiv.org/abs/0908.3314> (2009). Google Scholar  * Zhang, Y. et al. _Crossover of


three-dimensional topological insulator of Bi2Se3 to the two-dimensional limit_. Preprint at <http://arxiv.org/abs/0911.3706> (2009). Google Scholar  * Garate, I. & Franz,


M. _Inverse spin-galvanic effect in a topological-insulator/ferromagnet interface_. Preprint at <http://arxiv.org/abs/0911.0106> (2009). Google Scholar  * Wilczek, F. Two


applications of axion electrodynamics. _Phys. Rev. Lett._ 58, 1799–1802 (1987). Article  ADS  CAS  Google Scholar  * Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of


time-reversal invariant insulators. _Phys. Rev. B_ 78, 195424 (2008). Article  ADS  Google Scholar  * Qi, X.-L. et al. Inducing a magnetic monopole with topological surface states. _Science_


323, 1184–1187 (2009). Article  ADS  MathSciNet  CAS  Google Scholar  * Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in


crystalline insulators. _Phys. Rev. Lett._ 102, 146805 (2009). Article  ADS  Google Scholar  * Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects. _Nature Mater._ 6, 21–27


(2007). Article  ADS  CAS  Google Scholar  * Schnyder, A. P. et al. Classification of topological insulators and superconductors in three spatial dimensions. _Phys. Rev. B_ 78, 195125


(2008). Article  ADS  Google Scholar  * Kitaev, A. _Periodic table for topological insulators and superconductors_. Preprint at <http://arxiv.org/abs/0901.2686> (2009). Book 


Google Scholar  * Moore, J. E., Ran, Y. & Wen, X.-G. Topological surface states in three-dimensional magnetic insulators. _Phys. Rev. Lett._ 101, 186805 (2008). Article  ADS  Google


Scholar  * Fu, L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. _Phys. Rev. Lett._ 100, 096407 (2008). Article  ADS 


Google Scholar  * Jackiw, R. & Rossi, P. Zero modes of the vortex-fermion system. _Nucl. Phys. B_ 190, 681–691 (1980). Article  ADS  Google Scholar  * Wilczek, F. Majorana returns.


_Nature Physics_ 5, 614–618 (2009). Article  ADS  CAS  Google Scholar  * Nilsson, J., Akhmerov, A. R. & Beenakker, C. W. Splitting of a Cooper pair by a pair of Majorana bound states.


_Phys. Rev. Lett._ 101, 120403 (2008). Article  ADS  Google Scholar  * Collins, G. P. Computing with quantum knots. _Sci. Am._ 294, 57–63 (2006). Google Scholar  * Teo, J. & Kane, C. L.


Majorana fermions and non-Abelian statistics in three dimensions. _Phys. Rev. Lett._ 104, 046401 (2009). Article  ADS  Google Scholar  Download references ACKNOWLEDGEMENTS I have benefited


from conversations about topological insulators with L. Balents, B. A. Bernevig, A. Essin, M. Franz, D. Haldane, Z. Hasan, C. Kane, D.-H. Lee, A. Ludwig, L. Molenkamp, S. Ryu, D. Vanderbilt,


A. Vishwanath, X.-G. Wen, C. Xu and S.-C. Zhang. My work on topological insulators is supported by the US National Science Foundation. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS *


Department of Physics, 366 Le Conte #7300, University of California, Berkeley, 94720, California, USA Joel E. Moore * Materials Sciences Division, Lawrence Berkeley National Laboratory,


Berkeley, 94720, California, USA Joel E. Moore Authors * Joel E. Moore View author publications You can also search for this author inPubMed Google Scholar ETHICS DECLARATIONS COMPETING


INTERESTS The author declares no competing financial interest ADDITIONAL INFORMATION Reprints and permissions information is available at http://www.nature.com/reprints. Correspondence


should be addressed to the author ([email protected]). RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Moore, J. The birth of topological insulators.


_Nature_ 464, 194–198 (2010). https://doi.org/10.1038/nature08916 Download citation * Published: 10 March 2010 * Issue Date: 11 March 2010 * DOI: https://doi.org/10.1038/nature08916 SHARE


THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to


clipboard Provided by the Springer Nature SharedIt content-sharing initiative