Bacteriophage genes that inactivate the crispr/cas bacterial immune system


Bacteriophage genes that inactivate the crispr/cas bacterial immune system

Play all audios:


ABSTRACT A widespread system used by bacteria for protection against potentially dangerous foreign DNA molecules consists of the clustered regularly interspaced short palindromic repeats


(CRISPR) coupled with _cas_ (CRISPR-associated) genes1. Similar to RNA interference in eukaryotes2, these CRISPR/Cas systems use small RNAs for sequence-specific detection and neutralization


of invading genomes3. Here we describe the first examples of genes that mediate the inhibition of a CRISPR/Cas system. Five distinct ‘anti-CRISPR’ genes were found in the genomes of


bacteriophages infecting _Pseudomonas aeruginosa_. Mutation of the anti-CRISPR gene of a phage rendered it unable to infect bacteria with a functional CRISPR/Cas system, and the addition of


the same gene to the genome of a CRISPR/Cas-targeted phage allowed it to evade the CRISPR/Cas system. Phage-encoded anti-CRISPR genes may represent a widespread mechanism for phages to


overcome the highly prevalent CRISPR/Cas systems. The existence of anti-CRISPR genes presents new avenues for the elucidation of CRISPR/Cas functional mechanisms and provides new insight


into the co-evolution of phages and bacteria. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access


through your institution Subscribe to this journal Receive 51 print issues and online access $199.00 per year only $3.90 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS BACTERIOPHAGES SUPPRESS CRISPR–CAS IMMUNITY USING RNA-BASED ANTI-CRISPRS Article Open access


18 October 2023 DIVERSE VIRAL CAS GENES ANTAGONIZE CRISPR IMMUNITY Article 04 September 2024 PROPHAGE INTEGRATION INTO CRISPR LOCI ENABLES EVASION OF ANTIVIRAL IMMUNITY IN _STREPTOCOCCUS


PYOGENES_ Article 24 November 2021 ACCESSION CODES PRIMARY ACCESSIONS NCBI REFERENCE SEQUENCE * JX434030 * JX434031 * JX434032 * JX434033 DATA DEPOSITS Phage genomes have been deposited in


the National Center for Biotechnology Information under accession numbers JX434030 (JBD5), JX434031 (JBD24), JX434032 (JBD30) and JX434033 (JBD88a). REFERENCES * Makarova, K. S. et al.


Evolution and classification of the CRISPR-Cas systems. _Nature Rev. Microbiol._ 9, 467–477 (2011) Article  CAS  Google Scholar  * Makarova, K. S., Grishin, N. V., Shabalina, S. A., Wolf, Y.


I. & Koonin, E. V. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic


RNAi, and hypothetical mechanisms of action. _Biol. Direct_ 1, 7 (2006) Article  Google Scholar  * Brouns, S. J. J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. _Science_


321, 960–964 (2008) Article  ADS  CAS  Google Scholar  * Rodriguez-Valera, F. et al. Explaining microbial population genomics through phage predation. _Nature Rev. Microbiol._ 7, 828–836


(2009) Article  CAS  Google Scholar  * Labrie, S. J., Samson, J. E. & Moineau, S. Bacteriophage resistance mechanisms. _Nature Rev. Microbiol._ 8, 317–327 (2010) Article  CAS  Google


Scholar  * Jore, M. M., Brouns, S. J. J. & van der Oost, J. RNA in defense: CRISPRs protect prokaryotes against mobile genetic elements. _Cold Spring Harb. Perspect. Biol._ 4,


http://dx.doi.org/10.1101/cshperspect.a003657 (2012) * Haurwitz, R. E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J. A. Sequence- and structure-specific RNA processing by a CRISPR


endonuclease. _Science_ 329, 1355–1358 (2010) Article  ADS  CAS  Google Scholar  * Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. _Nature_


471, 602–607 (2011) Article  ADS  CAS  Google Scholar  * Wiedenheft, B. et al. Structures of the RNA-guided surveillance complex from a bacterial immune system. _Nature_ 477, 486–489 (2011)


Article  ADS  CAS  Google Scholar  * Westra, E. R. et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. _Mol.


Cell_ 46, 595–605 (2012) Article  CAS  Google Scholar  * Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. _Nature_ 468, 67–71 (2010)


Article  ADS  CAS  Google Scholar  * Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. _Science_ 315, 1709–1712 (2007) Article  ADS  CAS  Google


Scholar  * Yosef, I., Goren, M. G. & Qimron, U. Proteins and DNA elements essential for the CRISPR adaptation process in _Escherichia coli_. _Nucleic Acids Res._ 40, 5569–5576 (2012)


Article  CAS  Google Scholar  * Cady, K. C., Bondy-Denomy, J., Heussler, G. E., Davidson, A. R. & O’Toole, G. A. The CRISPR/Cas adaptive immune system of _Pseudomonas aeruginosa_


mediates resistance to naturally occurring and engineered phages. _J. Bacteriol._ 194, 5728–5738 (2012) Article  CAS  Google Scholar  * Marraffini, L. A. & Sontheimer, E. J. Self versus


non-self discrimination during CRISPR RNA-directed immunity. _Nature_ 463, 568–571 (2010) Article  ADS  CAS  Google Scholar  * Mojica, F. J. M., Diez-Villasenor, C., Garcia-Martinez, J.


& Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. _Microbiology_ 155, 733–740 (2009) Article  CAS  Google Scholar  * Braid, M. D.,


Silhavy, J. L., Kitts, C. L., Cano, R. J. & Howe, M. M. Complete genomic sequence of bacteriophage B3, a Mu-like phage of _Pseudomonas aeruginosa_. _J. Bacteriol._ 186, 6560–6574 (2004)


Article  CAS  Google Scholar  * Morgan, G. J., Hatfull, G. F., Casjens, S. & Hendrix, R. W. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in


_Haemophilus_, _Neisseria_ and _Deinococcus_. _J. Mol. Biol._ 317, 337–359 (2002) Article  CAS  Google Scholar  * Datsenko, K. A. et al. Molecular memory of prior infections activates the


CRISPR/Cas adaptive bacterial immunity system. _Nature Commun._ 3, 945 (2012) Article  ADS  Google Scholar  * Cady, K. C. & O’Toole, G. A. Non-identity-mediated CRISPR-bacteriophage


interaction mediated via the Csy and Cas3 proteins. _J. Bacteriol._ 193, 3433–3445 (2011) Article  CAS  Google Scholar  * Battle, S. E., Meyer, F., Rello, J., Kung, V. L. & Hauser, A. R.


Hybrid pathogenicity island PAGI-5 contributes to the highly virulent phenotype of a _Pseudomonas aeruginosa_ isolate in mammals. _J. Bacteriol._ 190, 7130–7140 (2008) Article  CAS  Google


Scholar  * Cady, K. C. et al. Prevalence, conservation and functional analysis of _Yersinia_ and _Escherichia_ CRISPR regions in clinical _Pseudomonas aeruginosa_ isolates. _Microbiology_


157, 430–437 (2011) Article  CAS  Google Scholar  * Semenova, E. et al. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence.


_Proc. Natl Acad. Sci. USA_ 108, 10098–10103 (2011) Article  ADS  CAS  Google Scholar  * Zegans, M. E. et al. Interaction between bacteriophage DMS3 and host CRISPR region inhibits group


behaviors of _Pseudomonas aeruginosa_. _J. Bacteriol._ 191, 210–219 (2009) Article  CAS  Google Scholar  * Heo, Y.-J., Chung, I.-Y., Choi, K. B., Lau, G. W. & Cho, Y.-H. Genome sequence


comparison and superinfection between two related _Pseudomonas aeruginosa_ phages, D3112 and MP22. _Microbiology_ 153, 2885–2895 (2007) Article  CAS  Google Scholar  * Chung, I.-Y. &


Cho, Y.-H. Complete genome sequences of two _Pseudomonas aeruginosa_ temperate phages, MP29 and MP42, which lack the phage-host CRISPR interaction. _J. Virol._ 86, 8336 (2012) Article  CAS 


Google Scholar  * Wang, P. W., Chu, L. & Guttman, D. S. Complete sequence and evolutionary genomic analysis of the _Pseudomonas aeruginosa_ transposable bacteriophage D3112. _J.


Bacteriol._ 186, 400–410 (2004) Article  CAS  Google Scholar  * Aziz, R. K. et al. The RAST server: rapid annotations using subsystems technology. _BMC Genomics_ 9, 75 (2008) Article  Google


Scholar  * Larkin, M. A. et al. Clustal W and Clustal X version 2.0. _Bioinformatics_ 23, 2947–2948 (2007) Article  CAS  Google Scholar  * Altschul, S. F., Gish, W., Miller, W., Myers, E.


W. & Lipman, D. J. Basic local alignment search tool. _J. Mol. Biol._ 215, 403–410 (1990) Article  CAS  Google Scholar  * Qiu, D., Damron, F. H., Mima, T., Schweizer, H. P. & Yu, H.


D. PBAD-based shuttle vectors for functional analysis of toxic and highly regulated genes in _Pseudomonas_ and _Burkholderia_ spp. and other bacteria. _Appl. Environ. Microbiol._ 74,


7422–7426 (2008) Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS We thank D. Guttman, Y.-H. Cho, K. Cady and G. O’Toole for providing _P. aeruginosa_ strains and phages.


We also thank K. Severinov for providing the M13 phage and _E. coli_ strains required for assaying the type 1-E system. We thank J. Brumell, A. Spence and W. Navarre for reading the


manuscript. We also thank D. Bona for technical assistance. This work was supported by an Operating Grant to K.L.M. (fund number MOP- 6279) and an Emerging Team Grant to A.R.D. and K.L.M.


(fund number XNE86943), both of which were from the Canadian Institutes for Health Research. J.B.D. was supported by a CIHR Canada Graduate Scholarship Doctoral Award. AUTHOR INFORMATION


AUTHORS AND AFFILIATIONS * Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Ontario, Canada Joe Bondy-Denomy & Alan R. Davidson * Department of Biochemistry,


University of Toronto, Toronto, M5S 1A8, Ontario, Canada April Pawluk & Alan R. Davidson * Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S


3E1, Ontario, Canada Karen L. Maxwell Authors * Joe Bondy-Denomy View author publications You can also search for this author inPubMed Google Scholar * April Pawluk View author publications


You can also search for this author inPubMed Google Scholar * Karen L. Maxwell View author publications You can also search for this author inPubMed Google Scholar * Alan R. Davidson View


author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS J.B.-D. designed experiments, performed experiments and wrote the manuscript, A.P. performed


experiments, K.L.M. supervised experiments, and A.R.D. designed experiments and wrote the manuscript. CORRESPONDING AUTHOR Correspondence to Alan R. Davidson. ETHICS DECLARATIONS COMPETING


INTERESTS The authors have filed a provisional patent pertaining to biotechnological applications of anti-CRISPR genes. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION This file contains


Supplementary Figures 1-12, Supplementary Tables 1-2 and a Supplementary Reference. (PDF 3310 kb) SUPPLEMENTARY DATA This file contains Supplementary Table 3 with A, Bacteria and Phage


strain information, B, Primers used in this study and C, Plasmids which were constructed. (XLSX 19 kb) POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 RIGHTS AND


PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Bondy-Denomy, J., Pawluk, A., Maxwell, K. _et al._ Bacteriophage genes that inactivate the CRISPR/Cas bacterial


immune system. _Nature_ 493, 429–432 (2013). https://doi.org/10.1038/nature11723 Download citation * Received: 06 August 2012 * Accepted: 26 October 2012 * Published: 16 December 2012 *


Issue Date: 17 January 2013 * DOI: https://doi.org/10.1038/nature11723 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link


Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative