Design of multivalent complexes using the barnase·barstar module


Design of multivalent complexes using the barnase·barstar module

Play all audios:


ABSTRACT The ribonuclease barnase (12 kDa) and its inhibitor barstar (10 kDa) form a very tight complex in which all N and C termini are accessible for fusion. Here we exploit this system to


create modular targeting molecules based on antibody scFv fragment fusions to barnase, to two barnase molecules in series and to barstar. We describe the construction, production and


purification of defined dimeric and trimeric complexes. Immobilized barnase fusions are used to capture barstar fusions from crude extracts to yield homogeneous, heterodimeric fusion


proteins. These proteins are stable, soluble and resistant to proteolysis. Using fusions with anti-p185HER2-ECD 4D5 scFv, we show that the anticipated gain in avidity from monomer to dimer


to trimer is obtained and that favorable tumor targeting properties are achieved. Many permutations of engineered multispecific fusion proteins become accessible with this technology of


quasi-covalent heterodimers. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your


institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access


to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read


our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS SPYMASK ENABLES COMBINATORIAL ASSEMBLY OF BISPECIFIC BINDERS Article Open access 16 March 2024 SELECTION OF


ANTIBODY-BINDING COVALENT APTAMERS Article Open access 08 August 2024 DEVELOPMENT OF MIRROR-IMAGE MONOBODIES TARGETING THE ONCOGENIC BCR::ABL1 KINASE Article Open access 23 December 2024


ACCESSION CODES ACCESSIONS PROTEIN DATA BANK * 1BGS * 1FVC REFERENCES * Batra, S.K., Jain, M., Wittel, U.A., Chauhan, S.C. & Colcher, D. Pharmacokinetics and biodistribution of


genetically engineered antibodies. _Curr. Opin. Biotechnol._ 13, 603–608 (2002). Article  CAS  Google Scholar  * Plückthun, A. & Pack, P. New protein engineering approaches to


multivalent and bispecific antibody fragments. _Immunotechnol._ 3, 83–105 (1997). Article  Google Scholar  * Todorovska, A. et al. Design and application of diabodies, triabodies and


tetrabodies for cancer targeting. _J. Immunol. Methods_ 248, 47–66 (2001). Article  CAS  Google Scholar  * Bennett, M.J., Schlunegger, M.P. & Eisenberg, D. 3D domain swapping: a


mechanism for oligomer assembly. _Prot. Sci._ 4, 2455–2468 (1995). Article  CAS  Google Scholar  * Dreier, T. et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell


response against lymphoma cells catalyzed by a single-chain bispecific antibody. _Int. J. Cancer_ 100, 690–697 (2002). Article  CAS  Google Scholar  * Rodrigues, M.L. et al. Engineering


Fab' fragments for efficient F(ab)2 formation in _Escherichia coli_ and for improved _in vivo_ stability. _J. Immunol._ 151, 6954–6961 (1993). CAS  PubMed  Google Scholar  * King, D.J.


et al. Improved tumor targeting with chemically cross-linked recombinant antibody fragments. _Cancer Res._ 54, 6176–6185 (1994). CAS  PubMed  Google Scholar  * Hill, C.P., Anderson, D.H.,


Wesson, L., DeGrado, W.F. & Eisenberg, D. Crystal structure of alpha 1: implications for protein design. _Science_ 249, 543–546 (1990). Article  CAS  Google Scholar  * O'Shea, E.K.,


Klemm, J.D., Kim, P.S. & Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel coiled coil. _Science_ 254, 543–544 (1991). Article  Google Scholar  * Jeffrey,


P.D., Gorina, S. & Pavletich, N.P. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. _Science_ 267, 1498–1502 (1995). Article  CAS  Google


Scholar  * Pack, P. & Plückthun, A. Miniantibodies: use of amphipathic helices to produce functional, flexibly linked dimeric Fv fragments with high avidity in _Escherichia coli_.


_Biochemistry_ 31, 1579–1584 (1992). Article  CAS  Google Scholar  * de Kruif, J. & Logtenberg, T. Leucine zipper dimerized bivalent and bispecific scFv antibodies from a semi-synthetic


antibody phage display library. _J. Biol. Chem._ 271, 7630–7634 (1996). Article  CAS  Google Scholar  * Terskikh, A.V. et al. “Peptabody”: a new type of high avidity binding protein. _Proc.


Natl. Acad. Sci. USA_ 94, 1663–1668 (1997). Article  CAS  Google Scholar  * Yazaki, P.J. & Wu, A.M. Construction and characterization of minibodies for imaging and therapy of colorectal


carcinomas. _Meth. Mol. Biol._ 207, 351–364 (2003). CAS  Google Scholar  * Carter, P. Bispecific human IgG by design. _J. Immunol. Methods_ 248, 7–15 (2001). Article  CAS  Google Scholar  *


Hartley, R.W. Barnase-barstar interaction. _Methods Enzymol._ 341, 599–611 (2001). Article  CAS  Google Scholar  * Schreiber, G. Methods for studying the interaction of barnase with its


inhibitor barstar. _Methods Mol. Biol._ 160, 213–226 (2001). CAS  PubMed  Google Scholar  * Schreiber, G. & Fersht, A.R. Rapid, electrostatically assisted association of proteins. _Nat.


Struct. Biol._ 3, 427–431 (1996). Article  CAS  Google Scholar  * Green, N.M. Avidin and streptavidin. _Methods Enzymol._ 184, 51–67 (1990). Article  CAS  Google Scholar  * Guillet, V.,


Lapthorn, A., Hartley, R.W. & Mauguen, Y. Recognition between a bacterial ribonuclease, barnase, and its natural inhibitor, barstar. _Structure_ 1, 165–177 (1993). Article  CAS  Google


Scholar  * Buckle, A.M., Schreiber, G. & Fersht, A.R. Protein-protein recognition: crystal structural analysis of a barnase-barstar complex at 2.0-A resolution. _Biochemistry_ 33,


8878–89 (1994). Article  CAS  Google Scholar  * Eigenbrot, C., Randal, M., Presta, L., Carter, P. & Kossiakoff, A.A. X-ray crystal structures of the antigen-binding domains from three


variants of humanized anti-p185HER2 antibody 4D5 and comparison with molecular modeling. _J. Mol. Biol._ 229, 969–995 (1993). Article  CAS  Google Scholar  * Willuda, J. et al. Tumor


targeting of mono-, di-, and tetravalent anti-p185(HER-2) miniantibodies multimerized by self-associating peptides. _J. Biol. Chem._ 276, 14385–14392 (2001). Article  CAS  Google Scholar  *


Slamon, D. et al. Studies of the HER-2/_neu_ proto-oncogene in human breast and ovarian cancer. _Science_ 244, 707–712 (1989). Article  CAS  Google Scholar  * Yarden, Y. & Sliwkowski,


M.X. Untangling the ErbB signalling network. _Nat. Rev. Mol. Cell Biol._ 2, 127–137 (2001). Article  CAS  Google Scholar  * Waibel, R. et al. Stable one-step technetium-99m labeling of


His-tagged recombinant proteins with a novel Tc(I)-carbonyl complex. _Nat. Biotechnol._ 17, 897–901 (1999). Article  CAS  Google Scholar  * Deyev, S.M., Yazynin, S.A., Kuznetsov, D.A.,


Jukovich, M. & Hartley, R.W. Ribonuclease-charged vector for facile direct cloning with positive selection. _Mol. Gen. Genet._ 259, 379–382 (1998). Article  CAS  Google Scholar  *


Hartley, R.W. Barnase and barstar. Expression of its cloned inhibitor permits expression of a cloned ribonuclease. _J. Mol. Biol._ 202, 913–915 (1988). Article  CAS  Google Scholar  *


Hartley, R.W. Barnase and barstar: two small proteins to fold and fit together. _Trends Biochem. Sci._ 14, 450–454 (1989). Article  CAS  Google Scholar  * Wörn, A. & Plückthun, A.


Stability engineering of antibody single-chain Fv fragments. _J. Mol. Biol._ 305, 989–1010 (2001). Article  Google Scholar  * Wörn, A. & Plückthun, A. An intrinsically stable antibody


scFv fragment can tolerate the loss of both disulfide bonds and fold correctly. _FEBS Lett._ 427, 357–361 (1998). Article  Google Scholar  * Lindner, P. et al. Specific detection of


his-tagged proteins with recombinant anti-His tag scFv-phosphatase or scFv-phage fusions. _Biotechniques_ 22, 140–149 (1997). Article  CAS  Google Scholar  * Yazaki, P.J. et al. Tumor


targeting of radiometal labeled anti-CEA recombinant T84.66 diabody and T84.66 minibody: Comparison to radioiodinated fragments. _Bioconjugate Chem._ 12, 220–228 (2001). Article  CAS  Google


Scholar  * Nielsen, U.B., Adams, G.P., Weiner, L.M. & Marks, J.D. Targeting of bivalent anti-ErbB2 antibody fragments to tumor cells is independent of the intrinsic antibody affinity.


_Cancer Res._ 60, 6434–6440 (2000). CAS  Google Scholar  * Casey, J.L. et al. Dosimetric evaluation and radioimmunotherapy of anti-tumour multivalent Fab' fragments. _Br. J. Cancer_ 81,


972–980 (1999). Article  CAS  Google Scholar  * Tahtis, K. et al. Biodistribution properties of (111)indium-labeled C-functionalized trans-cyclohexyl diethylenetriaminepentaacetic acid


humanized 3S193 diabody and F(ab′)(2) constructs in a breast carcinoma xenograft model. _Clin. Cancer Res._ 7, 1061–1072 (2001). CAS  PubMed  Google Scholar  * Trejtnar, F. & Laznicek,


M. Analysis of renal handling of radiopharmaceuticals. _Q. J. Nucl. Med._ 46, 181–194 (2002). CAS  PubMed  Google Scholar  * Ge, L., Knappik, A., Pack, P., Freund, C. & Plückthun, A.


Expressing antibodies in _Escherichia coli_. in _Antibody Engineering_, edn.2 (ed. Borrebaeck, C.A.K.) 229–266 (Oxford University Press, Oxford, 1995). Google Scholar  * Knappik, A. &


Plückthun, A. Engineered turns of a recombinant antibody improve its _in vivo_ folding. _Protein Eng._ 8, 81–89 (1995). Article  CAS  Google Scholar  * Hartley, R.W. Directed mutagenesis and


barnase-barstar recognition. _Biochemistry_ 32, 5978–5984 (1993). Article  CAS  Google Scholar  * Bass, S., Gu, Q. & Christen, A. Multicopy suppressors of prc mutant _Escherichia coli_


include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA. _J. Bacteriol._ 178, 1154–1161 (1996). Article  CAS  Google Scholar  * Miller, K. et al. Design, construction,


and _in vitro_ analyses of multivalent antibodies. _J. Immunol._ 170, 4854–4861 (2003). Article  CAS  Google Scholar  Download references ACKNOWLEDGEMENTS The authors thank Jörg Willuda for


discussions during the initial phase of this project, Annemarie Honegger for molecular modeling, Stephen F. Marino for help and comments, and Frank Bootz and Lydie Chané-Favre for help in


the immunogenicity experiments. The work was supported by grants from, among others, the Swiss National Science Foundation (no. 7UPJ062274), the Russian Foundation of Basic Research (no.


01-04-49450) and the Russian Science Support Foundation (no. 2077.2003.4) and PCB RAS. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Shemyakin & Ovchinnikov Institute of Bioorganic


Chemistry and Institute of Gene Biology, Russian Academy of Sciences, Miklukho-Maklaya str.16/10, Moscow, 117997, Russia Sergey M Deyev & Ekaterina N Lebedenko * Center of


Radiopharmaceutical Science, Villigen, CH-5232, PSI, Switzerland Robert Waibel & August P Schubiger * Department of Biochemistry, University of Zürich, Winterthurer str. 190, Zürich,


CH-8057, Switzerland Andreas Plückthun Authors * Sergey M Deyev View author publications You can also search for this author inPubMed Google Scholar * Robert Waibel View author publications


You can also search for this author inPubMed Google Scholar * Ekaterina N Lebedenko View author publications You can also search for this author inPubMed Google Scholar * August P Schubiger


View author publications You can also search for this author inPubMed Google Scholar * Andreas Plückthun View author publications You can also search for this author inPubMed Google Scholar


CORRESPONDING AUTHORS Correspondence to Sergey M Deyev or Andreas Plückthun. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY


INFORMATION SUPPLEMENTARY FIG. 1 (PDF 137 KB) SUPPLEMENTARY METHODS (PDF 162 KB) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Deyev, S., Waibel, R.,


Lebedenko, E. _et al._ Design of multivalent complexes using the barnase·barstar module. _Nat Biotechnol_ 21, 1486–1492 (2003). https://doi.org/10.1038/nbt916 Download citation * Received:


25 August 2003 * Accepted: 25 September 2003 * Published: 23 November 2003 * Issue Date: 01 December 2003 * DOI: https://doi.org/10.1038/nbt916 SHARE THIS ARTICLE Anyone you share the


following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer


Nature SharedIt content-sharing initiative