Lessons and revelations from biomimetic syntheses
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN

Play all audios:

ABSTRACT Biomimetic synthesis describes the field of organic chemistry that aims to emulate the natural, biosynthetic processes toward natural products. As well as providing insight into how
molecules are formed in nature, the benefits of this approach to total synthesis are numerous and extend beyond the gains typical of traditional synthesis. For example, using biosynthetic
proposals to design a synthetic route can highlight alternative methods to the desired target. The pursuit of biomimetic syntheses also promotes the development of new reactions to prove or
disprove a biosynthetic proposal or to unravel mechanistic implications of a proposed biosynthesis and can lead to the identification of new natural products. Here we look at some recent
compelling examples and examine how biomimetic synthesis has led to the discovery of new procedures and principles that would not have been found by other approaches. Access through your
institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print
issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to
local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT
BEING VIEWED BY OTHERS RATCHETING SYNTHESIS Article 15 December 2023 BIOCATALYSIS Article 24 June 2021 GEOMETRIC DISTORTION AS AN ENABLING TOOL FOR ORGANIC SYNTHESIS Article 09 April 2025
REFERENCES * Bentley, R. & Bennett, J.W. Constructing polyketides: from Collie to combinatorial biosynthesis. _Annu. Rev. Microbiol._ 53, 411–446 (1999). CAS PubMed Google Scholar *
Robinson, R. LXIII.–A synthesis of tropinone. _J. Chem. Soc. Trans._ 111, 762–768 (1917). CAS Google Scholar * Breslow, R. Biomimetic chemistry. _Chem. Soc. Rev._ 1, 553–580 (1972). CAS
Google Scholar * Barton, D.H.R. _Reason and Imagination: Reflections on Research in Organic Chemistry: Selected Papers of Derek H.R. Barton_. (World Scientific, 1996). Google Scholar *
Taylor, S.K. Biosynthetic, biomimetic and related epoxide cyclizations. A review. _Org. Prep. Proced. Int._ 24, 245–284 (1992). CAS Google Scholar * Yoder, R.A. & Johnston, J.N. A case
study in biomimetic total synthesis: polyolefin carbocyclizations to terpenes and steroids. _Chem. Rev._ 105, 4730–4756 (2005). AN ELEGANT REVIEW THAT PUTS TERPENE AND STEROID BIOSYNTHETIC
RESEARCH, SPANNING MORE THAN 70 YEARS, INTO CONTEXT. CAS PubMed PubMed Central Google Scholar * Scholz, U. & Winterfeldt, E. Biomimetic synthesis of alkaloids. _Nat. Prod. Rep._ 17,
349–366 (2000). CAS PubMed Google Scholar * Bulger, P.G., Bagal, S.K. & Marquez, R. Recent advances in biomimetic natural product synthesis. _Nat. Prod. Rep._ 25, 254–297 (2008). CAS
PubMed Google Scholar * Brunoldi, E., Luparia, M., Porta, A., Zanoni, G. & Vidari, G. Biomimetic cyclizations of functionalized isoprenoid polyenes: a cornucopia of synthetic
opportunities. _Curr. Org. Chem._ 10, 2259–2282 (2006). CAS Google Scholar * Beaudry, C.M., Malerich, J.P. & Trauner, D. Biosynthetic and biomimetic electrocyclizations. _Chem. Rev._
105, 4757–4778 (2005). CAS PubMed Google Scholar * de la Torre, M.C. & Sierra, M.A. Comments on recent achievements in biomimetic organic synthesis. _Angew. Chem. Int. Ed. Engl._ 43,
160–181 (2004). CAS PubMed Google Scholar * Nicolaou, K.C., Zipkin, R.E. & Petasis, N.A. The endiandric acid cascade. Electrocyclizations in organic synthesis. 3. “Biomimetic”
approach to endiandric acids A-G. Synthesis of precursors. _J. Am. Chem. Soc._ 104, 5558–5560 (1982). CAS Google Scholar * Nicolaou, K.C., Petasis, N.A. & Zipkin, R.E. The endiandric
acid cascade. Electrocyclizations in organic synthesis. 4. “Biomimetic” approach to endiandric acids A-G. Total synthesis and thermal studies. _J. Am. Chem. Soc._ 104, 5560–5562 (1982). CAS
Google Scholar * Heathcock, C.H. The enchanting alkaloids of Yuzuriha. _Angew. Chem. Int. Ed. Engl._ 31, 665–681 (1992). Google Scholar * Cherney, E.C. & Baran, P.S.
Terpenoid-alkaloids: their biosynthetic twist of fate and total synthesis. _Isr. J. Chem._ 51, 391–405 (2011). CAS PubMed PubMed Central Google Scholar * Baldwin, J.E. & Abraham, E.
The biosynthesis of penicillins and cephalosporins. _Nat. Prod. Rep._ 5, 129–145 (1988). CAS PubMed Google Scholar * Lane, A.L. & Moore, B.S. A sea of biosynthesis: marine natural
products meet the molecular age. _Nat. Prod. Rep._ 28, 411–428 (2011). CAS PubMed Google Scholar * Stork, G. William Summer Johnson, 1913–1995. in _Biographical Memoirs_ VOLS. 23–24,
182–197 (National Academy Press, 2001). Google Scholar * Davis, E.M. & Croteau, R. Cyclization enzymes in the biosynthesis of monoterpenes, sesterpenes and diterpenes. _Top. Curr.
Chem._ 209, 53–95 (2000). CAS Google Scholar * Maimone, T.J. & Baran, P.S. Modern synthetic efforts toward biologically active terpenes. _Nat. Chem. Biol._ 3, 396–407 (2007). CAS
PubMed Google Scholar * Chen, K. & Baran, P.S. Total synthesis of eudesmane terpenes by site-selective C-H oxidations. _Nature_ 459, 824–828 (2009). A REPORT DEMONSTRATING A TWO-PHASE
APPROACH TO TERPENOID SYNTHESIS, MODELED ON THEIR NATURAL BIOSYNTHESIS. CAS PubMed Google Scholar * Chen, K., Isihara, Y., Galán, M.M. & Baran, P.S. Total synthesis of eudesmane
terpenes: cyclase phase. _Tetrahedron_ 66, 4738–4744 (2010). CAS Google Scholar * Ortiz de Montellano, P.R. Hydrocarbon hydroxylation by cytochrome P450 enzymes. _Chem. Rev._ 110, 932–948
(2010). CAS PubMed PubMed Central Google Scholar * Engelin, C.J. & Fristrup, P. Palladium catalyzed allylic C-H alkylation: a mechanistic perspective. _Molecules_ 16, 951–969 (2011).
CAS PubMed PubMed Central Google Scholar * Giri, R., Shi, B.-F., Engle, K.M., Maugel, N. & Yu, J.-Q. Transition metal-catalyzed C-H activation reactions: diastereoselectivity and
enantioselectivity. _Chem. Soc. Rev._ 38, 3242–3272 (2009). CAS PubMed Google Scholar * Davies, H.M.L. & Manning, J.R. Catalytic C-H functionalization by metal carbenoid and nitrenoid
insertion. _Nature_ 451, 417–424 (2008). CAS PubMed PubMed Central Google Scholar * Newhouse, T. & Baran, P.S. If C-H bonds could talk: selective C-H bond oxidation. _Angew. Chem.
Int. Ed. Engl._ 50, 3362–3374 (2011). CAS PubMed PubMed Central Google Scholar * Chen, M.S. & White, M.C. A predictably selective aliphatic C-H oxidation reaction for complex
molecule synthesis. _Science_ 318, 783–787 (2007). CAS PubMed Google Scholar * Isihara, Y. & Baran, P.S. Two-phase terpene total synthesis: historical perspective and application to
the Taxol® problem. _Synlett_ 1733–1745 (2010). * Lin, Y.-Y. et al. Isolation and structure of brevetoxin B from the “red tide” dinoflagellate _Ptychodiscus brevis_ (_Gymnodinium breve_).
_J. Am. Chem. Soc._ 103, 6773–6775 (1981). CAS Google Scholar * Paz, B. et al. Yessotoxins, a group of marine polyether toxins: an overview. _Mar. Drugs_ 6, 73–102 (2008). CAS PubMed
PubMed Central Google Scholar * Yasumoto, T., Bagnis, R. & Vernoux, J.P. Toxicity study on surgeonfishes-II. Properties of the principal water-soluble toxin. _Nippon Suisan Gakkaishi_
42, 359–365 (1976). CAS Google Scholar * Lewis, R.J. The changing face of ciguatera. _Toxicon_ 39, 97–106 (2001). CAS PubMed Google Scholar * Nakanishi, K. The chemistry of brevetoxins:
a review. _Toxicon_ 23, 473–479 (1985). CAS PubMed Google Scholar * Lee, M.S., Qin, G., Nakanishi, K. & Zagorski, M.G. Biosynthetic studies of brevetoxins, potent neurotoxins
produced by the dinoflagellate _Gymnodinium breve_. _J. Am. Chem. Soc._ 111, 6234–6241 (1989). CAS Google Scholar * Shimizu, Y. Biosynthesis and biotransformation of marine invertebrate
toxins. in _Natural Toxins: Animal, Plant, and Microbial_ (ed. J.B. Harris) 123 (Clarendon Press, 1986). Google Scholar * Nicolaou, K.C. The total synthesis of brevetoxin B: A twelve-year
odyssey in organic synthesis. _Angew. Chem. Int. Ed. Engl._ 35, 588–607 (1996). IN THIS REVIEW, NICOLAOU RECALLS HIS PROPOSAL FOR THE BIOSYNTHESIS OF LADDER POLYETHERS, WHICH HE INCLUDED IN
A PROPOSAL TO THE NATIONAL INSTITUTES OF HEALTH IN 1982. Google Scholar * Baldwin, J.E. Rules for ring closure. _J. Chem. Soc. Chem. Commun._ 734–736 (1976). * Vilotijevic, I. &
Jamison, T.F. Epoxide-opening cascades in the synthesis of polycyclic polyether natural products. _Angew. Chem. Int. Ed. Engl._ 48, 5250–5281 (2009). CAS PubMed PubMed Central Google
Scholar * Morten, C.J. & Jamison, T.F. Water overcomes methyl group directing effects in epoxide-opening cascades. _J. Am. Chem. Soc._ 131, 6678–6679 (2009). CAS PubMed PubMed Central
Google Scholar * Vilotijevic, I. & Jamison, T.F. Synthesis of marine polycyclic polyethers _via endo_-selective epoxide-opening cascades. _Mar. Drugs_ 8, 763–809 (2010). CAS PubMed
PubMed Central Google Scholar * Nakata, T. Total synthesis of marine polycyclic ethers. _Chem. Rev._ 105, 4314–4347 (2005). CAS PubMed Google Scholar * Alvarez, E., Candenas, M.-L.,
Pérez, R., Ravelo, J.L. & Martín, J.D. Useful designs in the synthesis of _trans_-fused polyether toxins. _Chem. Rev._ 95, 1953–1980 (1995). CAS Google Scholar * Hoberg, J.O. Synthesis
of seven-membered oxacycles. _Tetrahedron_ 54, 12631–12670 (1998). CAS Google Scholar * Marmsäter, F.P. & West, F.G. New efficient iterative approaches to polycyclic ethers.
_Chemistry_ 8, 4346–4353 (2002). PubMed Google Scholar * Sasaki, M. & Fuwa, H. Convergent strategies for the total synthesis of polycyclic ether marine metabolites. _Nat. Prod. Rep._
25, 401–426 (2008). CAS PubMed Google Scholar * Vilotijevic, I. & Jamison, T.F. Epoxide-opening cascades promoted by water. _Science_ 317, 1189–1192 (2007). THE FIRST _ENDO_
-SELECTIVE CASCADE OF POLYEPOXIDE OPENINGS THAT DID NOT USE DIRECTING GROUPS TO GUIDE THE REACTION PROCESS. CAS PubMed PubMed Central Google Scholar * Morten, C.J., Byers, J.A., Van
Dyke, A.R., Vilotijevic, I. & Jamison, T.F. The development of _endo_-selective epoxide-opening cascades in water. _Chem. Soc. Rev._ 38, 3175–3192 (2009). CAS PubMed PubMed Central
Google Scholar * Morten, C.J., Byers, J.A. & Jamison, T.F. Evidence that epoxide-opening cascades promoted by water are stepwise and become faster and more selective after the first
cyclization. _J. Am. Chem. Soc._ 133, 1902–1908 (2011). CAS PubMed PubMed Central Google Scholar * Byers, J.A. & Jamison, T.F. On the synergism between H2O and a tetrahydropyran
template in the regioselective cyclization of an epoxy alcohol. _J. Am. Chem. Soc._ 131, 6383–6385 (2009). CAS PubMed PubMed Central Google Scholar * Heathcock, C.H. Nature knows best:
An amazing reaction cascade is uncovered by design and discovery. _Proc. Natl. Acad. Sci. USA_ 93, 14323–14327 (1996). CAS PubMed PubMed Central Google Scholar * Grube, A., Immel, S.,
Baran, P.S. & Köck, M. Massadine chloride: a biosynthetic precursor of massadine and stylissadine. _Angew. Chem. Int. Ed. Engl._ 46, 6721–6724 (2007). CAS PubMed Google Scholar *
Köck, M., Grube, A., Seiple, I.B. & Baran, P.S. The pursuit of palau'amine. _Angew. Chem. Int. Ed. Engl._ 46, 6586–6594 (2007). PubMed Google Scholar * Kato, H. et al. Notoamides
A-D: prenylated indole alkaloids isolated from a marine-derived fungus, _Aspergillus_ sp. _Angew. Chem. Int. Ed. Engl._ 46, 2254–2256 (2007). CAS PubMed Google Scholar * Grubbs, A.W.,
Artman, I.G.D., Tsukamoto, S. & Williams, R.M. A concise total synthesis of the notoamides C and D. _Angew. Chem. Int. Ed. Engl._ 46, 2257–2261 (2007). CAS PubMed Google Scholar *
Greshock, T.J., Grubbs, A.W., Tsukamoto, S. & Williams, R.M. A concise, biomimetic total synthesis of stephacidin A and notoamide B. _Angew. Chem. Int. Ed. Engl._ 46, 2262–2265 (2007).
CAS PubMed Google Scholar * Finefield, J.M. & Williams, R.M. Synthesis of notoamide J: a potentially pivotal intermediate in the biosynthesis of several prenylated indole alkaloids.
_J. Org. Chem._ 75, 2785–2789 (2010). CAS PubMed PubMed Central Google Scholar * Tsukamoto, S., Umaoka, H., Yoshikawa, K., Ikeda, T. & Hirota, H. Notoamide O, a structurally
unprecendented prenylated indole alkaloid, and notoamides P-R from a marine-derived fungus, _Aspergillus_ sp. _J. Nat. Prod._ 73, 1438–1440 (2010). CAS PubMed Google Scholar * Tsukamoto,
S. et al. Notoamides F-K, prenylated indole alkaloids isolated from a marine-derived _Apergillus_ sp. _J. Nat. Prod._ 71, 2064–2067 (2008). CAS PubMed Google Scholar * Ding, Y. et al.
Genome-based characterization of two prenylation steps in the assembly of the stephacidin and notoamide anticancer agents in a marine-derived _Aspergillus_ sp. _J. Am. Chem. Soc._ 132,
12733–12740 (2010). CAS PubMed PubMed Central Google Scholar * Artman, G.D. III, Grubbs, A.W. & Williams, R.M. Concise, asymmetric, stereocontrolled total synthesis of stephacidins
A, B and notoamide B. _J. Am. Chem. Soc._ 129, 6336–6342 (2007). CAS PubMed PubMed Central Google Scholar * Tsukamoto, S. et al. Isolation of notoamide E, a key precursor in the
biosynthesis of prenylated indole alkaloids in a marine-derived fungus, _Aspergillus_ sp. _J. Am. Chem. Soc._ 131, 3834–3835 (2009). CAS PubMed PubMed Central Google Scholar * Greshock,
T.J. et al. Isolation, structure elucidation, and biomimetic total synthesis of versicolamide B, and the isolation of antipodal (−)-stephacidin A and (+)-notoamide B from _Aspergillus
versicolor_ NRRL 35600. _Angew. Chem. Int. Ed. Engl._ 47, 3573–3577 (2008). CAS PubMed PubMed Central Google Scholar * Tsukamoto, S. et al. Isolation of antipodal (−)-versicolamide B and
notoamide L-N from a marine-derived _Aspergillus_ sp. _Org. Lett._ 11, 1297–1300 (2009). CAS PubMed PubMed Central Google Scholar * Williams, R.M. Natural product synthesis: Enabling
tools to penetrate Nature's secrets of biogenesis and biomechanism. _J. Org. Chem._ 76, 4221–4259 (2011). A REVIEW THAT SUMMARIZES THE BIOSYNTHETIC INVESTIGATIONS OF THE PRENYLATED
ALKALOIDS, HIGHLIGHTING UNEXPECTED DISCOVERIES AND DEVELOPMENT OF SYNTHETIC TECHNOLOGIES. CAS PubMed PubMed Central Google Scholar * Kelly, W.L. Intramolecular cyclizations of polyketide
biosynthesis: mining for a “Diels-Alderase”? _Org. Biomol. Chem._ 6, 4483–4493 (2008). CAS PubMed Google Scholar * Pohnert, G. Macrophomate synthase: the first structure of a natural
Diels-Alderase. _ChemBioChem_ 4, 713–715 (2003). CAS PubMed Google Scholar * Stocking, E.M. & Williams, R.M. Chemistry and biology of biosynthetic Diels-Alder reactions. _Angew. Chem.
Int. Ed. Engl._ 42, 3078–3115 (2003). CAS PubMed Google Scholar * Kim, H.J., Ruszczycky, M.W., Choi, S., Liu, Y. & Liu, H. Enzyme-catalysed [4+2] cycloaddition is a key step in the
biosynthesis of spinosyn A. _Nature_ 473, 109–112 (2011). THE FIRST REPORT OF AN ENZYME THAT EXCLUSIVELY CATALYZES A DIELS-ALDER REACTION. CAS PubMed PubMed Central Google Scholar *
Campbell, C.D. & Vederas, J.C. Biosynthesis of lovastatin and related metabolites formed by fungal iterative PKS enzymes. _Biopolymers_ 93, 755–763 (2010). CAS PubMed Google Scholar *
Brastianos, H.C. et al. Exiguamine A, an indole-2,3-dioxygenase (IDO) ihibitor isolated from the marine sponge _Neopetrosia exigua_. _J. Am. Chem. Soc._ 128, 16046–16047 (2006). CAS PubMed
Google Scholar * Löb, S., Königsrainer, A., Rammensee, H.-G., Opelz, G. & Terness, P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees?
_Nat. Rev. Cancer_ 9, 445–452 (2009). PubMed Google Scholar * Volgraf, M. et al. Biomimetic synthesis of the IDO inhibitors exiguamine A and B. _Nat. Chem. Biol._ 4, 535–537 (2008). A
REPORT ON THE BIOMIMETIC SYNTHESIS OF EXIGUAMINE A AND DISCOVERY OF EXIGUAMINE B, WHICH ALSO EXAMINES THE POSSIBLE BIOSYNTHETIC LINKS BETWEEN THE TWO CONGENERS. CAS PubMed Google Scholar
* O'Malley, D.P., Li, K., Maue, M., Zografos, A.L. & Baran, P.S. Total synthesis of dimerica pyrrole-imidazole alkaloids: Sceptrin, ageliferin, nagelamide E, oxysceptrin, nakamuric
acid, and the axinellamine carbon skeleton. _J. Am. Chem. Soc._ 129, 4762–4775 (2007). CAS PubMed Google Scholar * Walker, R.P., Faulkner, D.J., Van Engen, D. & Clardy, J. Sceptrin,
an antimicrobial agent from the sponge _Agelas sceptrum_. _J. Am. Chem. Soc._ 103, 6772–6773 (1981). CAS Google Scholar * Kinnel, R.B., Gehrken, H.-P. & Scheuer, P.J. Palau'amine:
a cytotoxic and immunosuppressive hexacyclic bisguanidine antibiotic from the sponge _Stylotella agminata_. _J. Am. Chem. Soc._ 115, 3376–3377 (1993). CAS Google Scholar * Kinnel, R.B.,
Gehrken, H.-P., Swali, R., Skoropowski, G. & Scheuer, P.J. Palau'amine and its congeners: a family of bioactive bisguanidnes from the marine sponge _Stylotella aurantium_. _J. Org.
Chem._ 63, 3281–3286 (1998). CAS Google Scholar * Kato, T., Shizuri, Y., Izumida, H., Yokoyama, A. & Endo, M. Styloguanidines, new chitinase inhibitors from the marine _Stylotella
aurantium_. _Tetrahedr. Lett._ 36, 2133–2136 (1995). CAS Google Scholar * Kobayashi, J., Suzuki, M. & Tsuda, M. Konbu'acidin A, a new bromopyrrole alkaloid with cdk4 inhibitory
activity from _Hymeniacidon_ sponge. _Tetrahedron_ 53, 15681–15684 (1997). CAS Google Scholar * Kobayashi, H. et al. Carteramine A, an inhibitor of neutrophil chemotaxis, from the marine
sponge _Stylissa carteri_. _Tetrahedr. Lett._ 48, 2127–2129 (2007). CAS Google Scholar * Buchanan, M.S. et al. Natural products, stylissadines A and B, specific antagonists of the P2X7
receptor, and important inflammatory target. _J. Org. Chem._ 72, 2309–2317 (2007). CAS PubMed Google Scholar * Buchanan, M.S., Carroll, A.R. & Quinn, R.J. Revised structure of
palau'amine. _Tetrahedr. Lett._ 48, 4573–4574 (2007). CAS Google Scholar * Grube, A. & Köck, M. Structural assignment of tetrabromostyloguanidine: does the relative configuration
of the palau'amines need revision? _Angew. Chem. Int. Ed. Engl._ 46, 2320–2324 (2007). CAS PubMed Google Scholar * Lanman, B.A., Overman, L.E., Paulini, R. & White, N.S. On the
structure of palau'amine: evidence for the revised relative configuration from chemical synthesis. _J. Am. Chem. Soc._ 129, 12896–12900 (2007). CAS PubMed PubMed Central Google
Scholar * Seiple, I.B. et al. Total synthesis of Palau'amine. _Angew. Chem. Int. Ed. Engl._ 49, 1095–1098 (2010). THE FIRST REPORTED TOTAL SYNTHESIS OF THE PYRROLE-IMIDZAOLE ALKALOID
PALAU'AMINE, CORROBORATING THE PREVIOUSLY REPORTED STRUCTURE REVISION. CAS PubMed PubMed Central Google Scholar * Al Mourabit, A. & Potier, P. Sponge's molecular diversity
through the ambivalent reactivity of 2-aminoimidazole: a universal chemical pathway to the oroidin-based pyrrole-imidazole alkaloids and their palau'amine congeners. _European J. Org.
Chem._ 237–243 (2001). * Hoffmann, H. & Lindel, T. Synthesis of the pyrrole-imidazole alkaloids. _Synthesis_ 2003, 1753–1783 (2003). Google Scholar * Jacquot, D.E.N. & Lindel, T.
Challenge palau'amine: current standings. _Curr. Org. Chem._ 9, 1551–1565 (2005). CAS Google Scholar * Weinreb, S.M. Some recent advances in the synthesis of polycyclic
imidazole-containing marine natural products. _Nat. Prod. Rep._ 24, 931–948 (2007). CAS PubMed Google Scholar * Ma, Z., Lu, J., Wang, X. & Chen, C. Revisiting the Kinnel-Scheuer
hypothesis for the biosynthesis of palau'amine. _Chem. Commun. (Camb.)_ 47, 427–429 (2011). CAS Google Scholar * Kobayashi, J. et al. Ageliferins, potent actomyosin ATPase activators
from the Okinawan marine sponge _Agelas_ sp. _Tetrahedron_ 46, 5579–5586 (1990). CAS Google Scholar * Baran, P.S., O'Malley, D.P. & Zografos, A.L. Sceptrin as a potential
biosynthetic precursor to complex pyrrole-imidazole alkaloids: the total synthesis of ageliferin. _Angew. Chem. Int. Ed. Engl._ 43, 2674–2677 (2004). CAS PubMed Google Scholar * Northrop,
B.H., O'Malley, D.P., Zografos, A.L., Baran, P.S. & Houk, K.N. Mechanism of the vinylcyclobutane rearrangement of sceptrin to ageliferin and nagelamide E. _Angew. Chem. Int. Ed.
Engl._ 45, 4126–4130 (2006). CAS PubMed Google Scholar * Snyder, S.A., Zografos, A.L. & Lin, Y. Total synthesis of resveratrol-based natural products: a chemoselective solution.
_Angew. Chem. Int. Ed. Engl._ 46, 8186–8191 (2007). A REPORT DISCUSSING THE USE OF TRICYCLIC SYNTHONS FOR THE SYNTHESIS OF SEVERAL OLIGOMERIC RESVERATROL NATURAL PRODUCTS. CAS PubMed
Google Scholar * Snyder, S.A., Breazzano, S.P., Ross, A.G., Lin, Y. & Zografos, A.L. Total synthesis of diverse carbogenic complexity within the resvertrol class from a common building
block. _J. Am. Chem. Soc._ 131, 1753–1765 (2009). CAS PubMed Google Scholar * Stierle, A.A., Stierle, D.B. & Kelly, K. Berkelic acid, a novel spiroketal with selective anticancer
activity from an acid mine waste fungal extremophile. _J. Org. Chem._ 71, 5357–5360 (2006). CAS PubMed Google Scholar * Buchgraber, P. et al. A synthesis-driven strcuture revision of
berkelic acid methyl ester. _Angew. Chem. Int. Ed. Engl._ 47, 8450–8454 (2008). CAS PubMed Google Scholar * Wu, X., Zhou, J. & Snider, B.B. Synthesis of (−)-berkelic acid. _Angew.
Chem. Int. Ed._ 48, 1283–1286 (2009). CAS Google Scholar * Bender, C.F., Yoshimoto, F.K., Paradise, C.L. & De Brabander, J.K. A concise synthesis of berkelic acid insprired by
combining the natural products spicifernin and pulvilloric acid. _J. Am. Chem. Soc._ 131, 11350–11352 (2009). CAS PubMed PubMed Central Google Scholar * Liu, B. & De Brabander, J.K.
Metal-catalyzed regioselective oxy-functionlization of internal alkyne: an entry into ketones, acetals, and spiroketals. _Org. Lett._ 8, 4907–4910 (2006). CAS PubMed Google Scholar * De
Brabander, J.K., Liu, B. & Au Qian, M. Au(I)- and Pt(II)-catalyzed cycloetherification of ω-hydroxy propargylic esters. _Org. Lett._ 10, 2533–2536 (2008). CAS PubMed Google Scholar *
Dehn, R. et al. Molecular basis of elansolid biosynthesis: evidence for an unprecedented quinone methide initiated intramolecular Diels-Alder cycloaddition/macrolactonization. _Angew. Chem.
Int. Ed. Engl._ 50, 3882–3887 (2011). AN EXAMPLE OF A QUINONE METHIDE USED AS A SUBSTRATE FOR A DIELS-ALDER CYCLOADDITION REACTION IN NATURAL PRODUCT SYNTHESIS. CAS PubMed Google Scholar
* Nakajima, H., Fujimoto, H., Matsumoto, R. & Hamasaki, T. Biosynthesis of spiciferone A and spicifernin, bioactive metabolites of the phytopathogenic fungus, _Cochliobolus spicifer_.
_J. Org. Chem._ 58, 4526–4528 (1993). CAS Google Scholar * Eschenmoser, A. Vitamin B12: Experiments concerning the origin of its molecular structure. _Angew. Chem. Int. Ed. Engl._ 27, 5–39
(1988). A REVIEW THAT DESCRIBES HOW THE TOTAL SYNTHESIS OF VITAMIN B12 SPURRED INVESTIGATIONS INTO ITS BIOSYNTHESIS AND THE ORIGIN OF THE CORRIN SUBSTRUCTURE. Google Scholar Download
references ACKNOWLEDGEMENTS We thank J.M. Ready and U.K.Tambar (University of Texas Southwestern) for critical reading of this manuscript. We gratefully acknowledge financial support by the
National Institutes of Health (CA 90349) and the Robert A. Welch Foundation (I-1422). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Biochemistry, The University of Texas
Southwestern Medical Center at Dallas, Dallas, Texas, USA Mina Razzak & Jef K De Brabander Authors * Mina Razzak View author publications You can also search for this author inPubMed
Google Scholar * Jef K De Brabander View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to Jef K De Brabander. ETHICS
DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Razzak, M., De
Brabander, J. Lessons and revelations from biomimetic syntheses. _Nat Chem Biol_ 7, 865–875 (2011). https://doi.org/10.1038/nchembio.709 Download citation * Published: 15 November 2011 *
Issue Date: December 2011 * DOI: https://doi.org/10.1038/nchembio.709 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry,
a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative