Biomolecular condensates: organizers of cellular biochemistry


Biomolecular condensates: organizers of cellular biochemistry

Play all audios:


KEY POINTS * In addition to canonical membrane-bound organelles, eukaryotic cells contain numerous membraneless compartments, or biomolecular condensates, that concentrate specific


collections of proteins and nucleic acids. * Biomolecular condensates behave as phase-separated liquids and are enriched in multivalent molecules. * Theoretical concepts from polymer and


physical chemistry regarding the behaviour of multivalent molecules provide a mechanistic framework that can explain a wide range of cellular behaviours exhibited by biomolecular


condensates, including plausible mechanisms by which their assembly, composition, and biochemical and cellular functions can be regulated. ABSTRACT Biomolecular condensates are micron-scale


compartments in eukaryotic cells that lack surrounding membranes but function to concentrate proteins and nucleic acids. These condensates are involved in diverse processes, including RNA


metabolism, ribosome biogenesis, the DNA damage response and signal transduction. Recent studies have shown that liquid–liquid phase separation driven by multivalent macromolecular


interactions is an important organizing principle for biomolecular condensates. With this physical framework, it is now possible to explain how the assembly, composition, physical properties


and biochemical and cellular functions of these important structures are regulated. Access through your institution Buy or subscribe This is a preview of subscription content, access via


your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days


cancel any time Learn more Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink *


Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional


subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS A FRAMEWORK FOR UNDERSTANDING THE FUNCTIONS OF BIOMOLECULAR CONDENSATES ACROSS SCALES Article


09 November 2020 BIOMOLECULAR CONDENSATES AS ARBITERS OF BIOCHEMICAL REACTIONS INSIDE THE NUCLEUS Article Open access 15 December 2020 RNA-MEDIATED DEMIXING TRANSITION OF LOW-DENSITY


CONDENSATES Article Open access 27 April 2023 REFERENCES * Mao, Y. S., Zhang, B. & Spector, D. L. Biogenesis and function of nuclear bodies. _Trends Genet._ 27, 295–306 (2011). Article 


CAS  PubMed  PubMed Central  Google Scholar  * Decker, C. J. & Parker, R. P-Bodies and stress granules: possible roles in the control of translation and mRNA degradation. _Cold Spring


Harb. Perspect. Biol._ 4, a012286 (2012). Article  PubMed  PubMed Central  CAS  Google Scholar  * Wu, H. Higher-order assemblies in a new paradigm of signal transduction. _Cell_ 153, 287–292


(2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pederson, T. The nucleolus. _Cold Spring Harb. Perspect. Biol._ 3, a000638 (2011). PubMed  PubMed Central  Google Scholar  *


Dundr, M. et al. _In vivo_ kinetics of Cajal body components. _J. Cell Biol._ 164, 831–842 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Phair, R. D. & Misteli, T. High


mobility of proteins in the mammalian cell nucleus. _Nature_ 404, 604–609 (2000). Article  CAS  PubMed  Google Scholar  * Weidtkamp-Peters, S. et al. Dynamics of component exchange at PML


nuclear bodies. _J. Cell Sci._ 121, 2731–2743 (2008). Article  CAS  PubMed  Google Scholar  * Platani, M., Goldberg, I., Swedlow, J. R. & Lamond, A. I. _In vivo_ analysis of Cajal body


movement, separation, and joining in live human cells. _J. Cell Biol._ 151, 1561–1574 (2000). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shaw, P. J. & Jordan, E. G. The


nucleolus. _Annu. Rev. Cell Dev. Biol._ 11, 93–121 (1995). Article  CAS  PubMed  Google Scholar  * Fu, L. et al. Nuclear aggresomes form by fusion of PML-associated aggregates. _Mol. Biol.


Cell_ 16, 4905–4917 (2005). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, Y.-C. M., Kappel, C., Beaudouin, J., Eils, R. & Spector, D. L. Live cell dynamics of


promyelocytic leukemia nuclear bodies upon entry into and exit from mitosis. _Mol. Biol. Cell_ 19, 3147–3162 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dellaire, G.,


Ching, R. W., Dehghani, H., Ren, Y. & Bazett-Jones, D. P. The number of PML nuclear bodies increases in early S phase by a fission mechanism. _J. Cell Sci._ 119, 1026–1033 (2006).


Article  CAS  PubMed  Google Scholar  * Brangwynne, C. P., Mitchison, T. J. & Hyman, A. A. Active liquid-like behavior of nucleoli determines their size and shape in _Xenopus laevis_


oocytes. _Proc. Natl Acad. Sci. USA_ 108, 4334–4339 (2011). DEMONSTRATES THAT NUCLEOLI, SIMILAR TO P GRANULES, BEHAVE AS PHASE-SEPARATED LIQUIDS, INDICATING THE GENERALITY OF THE BEHAVIOUR.


Article  CAS  PubMed  PubMed Central  Google Scholar  * Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. _Science_ 324,


1729–1732 (2009). SHOWS THAT P GRANULES BEHAVE AS PHASE-SEPARATED LIQUIDS, PROVIDING A PHYSICAL MECHANISM TO EXPLAIN CONDENSATE FORMATION. Article  CAS  PubMed  Google Scholar  * Saha, S. et


al. Polar positioning of phase-separated liquid compartments in cells regulated by an mRNA competition mechanism. _Cell_ 166, 1572–1584 (2016). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. _Cell_ 162, 1066–1077 (2015). Article  CAS  PubMed  Google Scholar  *


Altmeyer, M. et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). _Nat. Commun._ 6, 8088 (2015). Article  CAS  PubMed  Google Scholar  * Hyman, A. A.


& Brangwynne, C. P. Beyond stereospecificity: liquids and mesoscale organization of cytoplasm. _Dev. Cell_ 21, 14–16 (2011). Article  CAS  PubMed  Google Scholar  * Hyman, A. A., Weber,


C. A. & Jülicher, F. Liquid–liquid phase separation in biology. _Annu. Rev. Cell Dev. Biol._ 30, 39–58 (2014). Article  CAS  PubMed  Google Scholar  * Li, P. et al. Phase transitions in


the assembly of multivalent signalling proteins. _Nature_ 483, 336–340 (2012). THE ASSEMBLY OF MULTIVALENT SIGNALLING PROTEINS CAN PROMOTE PHASE SEPARATION, THUS PROVIDING A MOLECULAR


MECHANISM TO EXPLAIN BIOMOLECULAR CONDENSATE FORMATION AND A BIOCHEMICAL ROUTE TO UNDERSTAND THE PROCESS. Article  CAS  PubMed  PubMed Central  Google Scholar  * King, O. D., Gitler, A. D.


& Shorter, J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. _Brain Res._ 1462, 61–80 (2012). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Han, T. W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. _Cell_ 149, 768–779 (2012). DEMONSTRATES THAT


DISORDERED, LOW COMPLEXITY SEQUENCES FROM PROTEINS IN RNA GRANULES CAN FORM AMYLOID-LIKE FIBRES AND HYDROGELS, PROVIDING A CLOSELY RELATED MECHANISM TO EXPLAIN BIOMOLECULAR CONDENSATE


FORMATION. Article  CAS  PubMed  Google Scholar  * Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. _Mol. Cell_


57, 936–947 (2015). DISORDERED, LOW COMPLEXITY SEQUENCES CAN PHASE SEPARATE, EXPANDING THE RANGE OF MOLECULES SHOWING THIS BEHAVIOUR. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Mitrea, D. M. et al. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. _eLife_ 5, 13571 (2016). Article 


Google Scholar  * Flory, P. J. _Principles of Polymer Chemistry_ (Cornell Univ. Press, 1953). Google Scholar  * Banjade, S. & Rosen, M. K. Phase transitions of multivalent proteins can


promote clustering of membrane receptors. _eLife_ 3, e04123 (2014). SHOWS THAT MULTIVALENCY-DRIVEN PHASE SEPARATION CAN ALSO EXPLAIN THE CLUSTERING OF MEMBRANE RECEPTORS. Article  PubMed


Central  CAS  Google Scholar  * Su, X. et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. _Science_ 352, 595–599 (2016). DEMONSTRATES THAT PHASE


SEPARATION OF MULTIVALENT PROTEINS IN THE T CELL RECEPTOR SIGNALLING PATHWAY DRIVES THE FORMATION OF SIGNALLING CLUSTERS IN CELLS; PHASE SEPARATION ALSO PROMOTES ACTIN ASSEMBLY, PROTECTS THE


SIGNALLING MOLECULES FROM INACTIVATION BY PHOSPHATASES AND PROBABLY ACTIVATES THE INTRACELLULAR MAPK CASCADE. Article  CAS  PubMed  PubMed Central  Google Scholar  * Fromm, S. A. et al. _In


vitro_ reconstitution of a cellular phase-transition process that involves the mRNA decapping machinery. _Angew. Chem. Int. Ed._ 53, 7354–7359 (2014). Article  CAS  Google Scholar  * Zeng,


M. et al. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. _Cell_ 166, 1163–1175.e12 (2016). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Banani, S. F. et al. Compositional control of phase-separated cellular bodies. _Cell_ 166, 651–663 (2016). DESCRIBES A SIMPLE MODEL FOR CONTROLLING BIOMOLECULAR


CONDENSATE COMPOSITION. Article  CAS  PubMed  PubMed Central  Google Scholar  * Foo, C. T. S. W. P., Lee, J. S., Mulyasasmita, W., Parisi-Amon, A. & Heilshorn, S. C. Two-component


protein-engineered physical hydrogels for cell encapsulation. _Proc. Natl Acad. Sci. USA_ 106, 22067–22072 (2009). Article  CAS  Google Scholar  * Mulyasasmita, W., Lee, J. S. &


Heilshorn, S. C. Molecular-level engineering of protein physical hydrogels for predictive sol–gel phase behavior. _Biomacromolecules_ 12, 3406–3411 (2011). Article  CAS  PubMed  PubMed


Central  Google Scholar  * Brangwynne, C. P., Tompa, P. & Pappu, R. V. Polymer physics of intracellular phase transitions. _Nat. Phys._ 11, 899–904 (2015). Article  CAS  Google Scholar 


* Elbaum-Garfinkle, S. et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. _Proc. Natl Acad. Sci. USA_ 112, 7189–7194


(2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological


fibrillization. _Cell_ 163, 123–133 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Burke, K. A., Janke, A. M., Rhine, C. L. & Fawzi, N. L. Residue-by-residue view of _in


vitro_ FUS granules that bind the C-terminal domain of RNA polymerase II. _Mol. Cell_ 60, 231–241 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhang, H. et al. RNA


controls polyQ protein phase transitions. _Mol. Cell_ 60, 220–230 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gilks, N. et al. Stress granule assembly is mediated by


prion-like aggregation of TIA-1. _Mol. Biol. Cell_ 15, 5383–5398 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Decker, C. J., Teixeira, D. & Parker, R. Edc3p and a


glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in _Saccharomyces cerevisiae_. _J. Cell Biol._ 179, 437–449 (2007). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Reijns, M. A. M., Alexander, R. D., Spiller, M. P. & Beggs, J. D. A role for Q/N-rich aggregation-prone regions in P-body localization. _J. Cell Sci._ 121, 2463–2472


(2008). Article  CAS  PubMed  Google Scholar  * Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. _Cell_ 149, 753–767


(2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jiang, H. et al. Phase transition of spindle-associated protein regulate spindle apparatus assembly. _Cell_ 163, 108–122


(2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lin, Y., Protter, D. S. W., Rosen, M. K. & Parker, R. Formation and maturation of phase-separated liquid droplets by


RNA-binding proteins. _Mol. Cell_ 60, 208–219 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pak, C. W. et al. Sequence determinants of intracellular phase separation by


complex coacervation of a disordered protein. _Mol. Cell_ 63, 72–85 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Crick, S. L., Jayaraman, M., Frieden, C., Wetzel, R. &


Pappu, R. V. Fluorescence correlation spectroscopy shows that monomeric polyglutamine molecules form collapsed structures in aqueous solutions. _Proc. Natl Acad. Sci. USA_ 103, 16764–16769


(2006). Article  CAS  PubMed  PubMed Central  Google Scholar  * Crick, S. L., Ruff, K. M., Garai, K., Frieden, C. & Pappu, R. V. Unmasking the roles of N− and C-terminal flanking


sequences from exon 1 of huntingtin as modulators of polyglutamine aggregation. _Proc. Natl Acad. Sci. USA_ 110, 20075–20080 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Das, R. K. & Pappu, R. V. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. _Proc. Natl Acad. Sci. USA_


110, 13392–13397 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kwon, I. et al. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity


domains. _Cell_ 155, 1049–1060 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Xiang, S. et al. The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers,


liquid-like droplets, and nuclei. _Cell_ 163, 829–839 (2015). REFERENCES 16, 35, 43 AND 49 DEMONSTRATE THAT INITIAL PHASE SEPARATION OF DISORDERED PROTEINS IS FOLLOWED OVER TIME BY


MATURATION OR HARDENING INTO FIBROUS SOLIDS, UNITING PHASE SEPARATION AND FIBRE FORMATION MECHANISMS OF BIOMOLECULAR CONDENSATE FORMATION UNDER A COMMON FRAMEWORK. Article  CAS  PubMed 


PubMed Central  Google Scholar  * Buchan, J. R., Kolaitis, R.-M., Taylor, J. P. & Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. _Cell_ 153,


1461–1474 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Conicella, A. E., Zerze, G.H., Mittal, J. & Fawzi, N. L. ALS mutations disrupt phase separation mediated by


α-helical structure in the TDP-43 low-complexity C-terminal domain. _Structure_ 24, 1537–1549 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Jain, S. et al. ATPase-modulated


stress granules contain a diverse proteome and substructure. _Cell_ 164, 487–498 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Quiroz, F. G. & Chilkoti, A. Sequence


heuristics to encode phase behaviour in intrinsically disordered protein polymers. _Nat. Mater._ 14, 1164–1171 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Weber, S. C.


& Brangwynne, C. P. Inverse size scaling of the nucleolus by a concentration-dependent phase transition. _Curr. Biol._ 25, 641–646 (2015). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Shevtsov, S. P. & Dundr, M. Nucleation of nuclear bodies by RNA. _Nat. Cell Biol._ 13, 167–173 (2011). Article  CAS  PubMed  Google Scholar  * Kaiser, T. E., Intine, R. V.


& Dundr, M. _De novo_ formation of a subnuclear body. _Science_ 322, 1713–1717 (2008). Article  CAS  PubMed  Google Scholar  * Mao, Y. S., Sunwoo, H., Zhang, B. & Spector, D. L.


Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. _Nat. Cell Biol._ 13, 95–101 (2011). Article  CAS  PubMed  Google Scholar  * Chung, I.,


Leonhardt, H. & Rippe, K. _De novo_ assembly of a PML nuclear subcompartment occurs through multiple pathways and induces telomere elongation. _J. Cell Sci._ 124, 3603–3618 (2011).


Article  CAS  PubMed  Google Scholar  * Berry, J., Weber, S. C., Vaidya, N., Haataja, M. & Brangwynne, C. P. RNA transcription modulates phase transition-driven nuclear body assembly.


_Proc. Natl Acad. Sci. USA_ 112, E5237–E5245 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hancock, R. A role for macromolecular crowding effects in the assembly and


function of compartments in the nucleus. _J. Struct. Biol._ 146, 281–290 (2004). Article  CAS  PubMed  Google Scholar  * Dellaire, G., Eskiw, C., Dehghani, H., Ching, R. & Bazett-Jones,


D. Mitotic accumulations of PML protein contribute to the re-establishment of PML nuclear bodies in G1. _J. Cell Sci._ 119, 1034–1042 (2006). Article  CAS  PubMed  Google Scholar  * Saha, S.


et al. Polar positioning of phase-separated liquid compartments in cells regulated by an mRNA competition mechanism. _Cell_ 166, 1572–1584.e16 (2016). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Grousl, T. et al. Robust heat shock induces eIF2α-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast,


_Saccharomyces cerevisiae_. _J. Cell Sci._ 122, 2078–2088 (2009). Article  CAS  PubMed  Google Scholar  * Buchan, J. R. & Parker, R. Eukaryotic stress granules: the ins and outs of


translation. _Mol. Cell_ 36, 932–941 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hoyle, N. P., Castelli, L. M., Campbell, S. G., Holmes, L. E. A. & Ashe, M. P.


Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies. _J. Cell Biol._ 179, 65–74 (2007). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Louria-Hayon, I. et al. The promyelocytic leukemia protein protects p53 from Mdm2-mediated inhibition and degradation. _J. Biol. Chem._ 278,


33134–33141 (2003). Article  CAS  PubMed  Google Scholar  * Ishov, A. M. et al. PML is critical for ND10 formation and recruits the PML-interacting protein Daxx to this nuclear structure


when modified by SUMO-1. _J. Cell Biol._ 147, 221–234 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Hamill, D. R., Severson, A. F., Carter, J. C. & Bowerman, B.


Centrosome maturation and mitotic spindle assembly in _C. elegans_ require SPD-5, a protein with multiple coiled-coil domains. _Dev. Cell_ 3, 673–684 (2002). Article  CAS  PubMed  Google


Scholar  * Kedersha, N. L., Gupta, M., Li, W., Miller, I. & Anderson, P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2α to the assembly of mammalian stress


granules. _J. Cell Biol._ 147, 1431–1442 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kroschwald, S. et al. Promiscuous interactions and protein disaggregases determine


the material state of stress-inducible RNP granules. _eLife_ 4, e06807 (2015). Article  PubMed  PubMed Central  Google Scholar  * Feric, M. et al. Coexisting liquid phases underlie nucleolar


subcompartments. _Cell_ 165, 1686–1697 (2016). DEMONSTRATES THE RECONSTITUTION OF MULTILAYERED PHASE-SEPARATED LIQUID STRUCTURES FROM SIMPLE MIXTURES OF RECOMBINANT PROTEINS, SHOWING THAT


SUCH COMPLEXITY CAN BE ACHIEVED IN A SIMPLE FASHION. Article  CAS  PubMed  PubMed Central  Google Scholar  * Boke, E. et al. Amyloid-like self-assembly of a cellular compartment. _Cell_ 166,


637–650 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Fändrich, M., Fletcher, M. A. & Dobson, C. M. Amyloid fibrils from muscle myoglobin. _Nature_ 410, 165–166


(2001). Article  PubMed  Google Scholar  * Vitalis, A., Wang, X. & Pappu, R. V. Quantitative characterization of intrinsic disorder in polyglutamine: insights from analysis based on


polymer theories. _Biophys. J._ 93, 1923–1937 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Halfmann, R. A glass menagerie of low complexity sequences. _Curr. Opin. Struc


Biol._ 38, 9–16 (2016). Article  CAS  Google Scholar  * Watanabe, H. Viscoelasticity and dynamics of entangled polymers. _Prog. Polym. Sci._ 24, 1253–1403 (1999). Article  CAS  Google


Scholar  * Ramaswami, M., Taylor, J. P. & Parker, R. Altered ribostasis: RNA–protein granules in degenerative disorders. _Cell_ 154, 727–736 (2013). Article  CAS  PubMed  Google Scholar


  * Li, Y. R., King, O. D., Shorter, J. & Gitler, A. D. Stress granules as crucibles of ALS pathogenesis. _J. Cell Biol._ 201, 361–372 (2013). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Weber, S. C. & Brangwynne, C. P. Getting RNA and protein in phase. _Cell_ 149, 1188–1191 (2012). Article  CAS  PubMed  Google Scholar  * Wolozin, B. Physiological


protein aggregation run amuck: stress granules and the genesis of neurodegenerative disease. _Discov. Med._ 17, 47–52 (2014). PubMed  PubMed Central  Google Scholar  * Aguzzi, A. &


Altmeyer, M. Phase separation: linking cellular compartmentalization to disease. _Trends Cell Biol._ 26, 547–558 (2016). Article  CAS  PubMed  Google Scholar  * Alberti, S. & Hyman, A.


A. Are aberrant phase transitions a driver of cellular aging? _BioEssays_ 38, 959–968 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Oakes, C. C., La Salle, S., Smiraglia,


D. J., Robaire, B. & Trasler, J. M. A unique configuration of genome-wide DNA methylation patterns in the testis. _Proc. Natl Acad. Sci. USA_ 104, 228–233 (2007). Article  CAS  PubMed 


Google Scholar  * Feric, M. & Brangwynne, C. P. A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells. _Nat. Cell Biol._ 15, 1253–1259 (2013).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Kaizuka, Y., Douglass, A. D., Varma, R., Dustin, M. L. & Vale, R. D. Mechanisms for segregating T cell receptor and adhesion


molecules during immunological synapse formation in Jurkat T cells. _Proc. Natl Acad. Sci. USA_ 104, 20296–20301 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yi, J., Wu,


X. S., Crites, T. & Hammer, J. A. Actin retrograde flow and actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse in Jurkat T cells. _Mol. Biol.


Cell_ 23, 834–852 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Lee, C. F., Brangwynne, C. P., Gharakhani, J., Hyman, A. A. & Jülicher, F. Spatial organization of the


cell cytoplasm by position-dependent phase separation. _Phys. Rev. Lett._ 111, 088101 (2013). Article  PubMed  CAS  Google Scholar  * Zwicker, D., Hyman, A. A. & Jülicher, F. Suppression


of Ostwald ripening in active emulsions. _Phys. Rev. E_ 92, 012317 (2015). Article  CAS  Google Scholar  * Hagan, M. F. & Baskaran, A. Emergent self-organization in active materials.


_Curr. Opin. Cell Biol._ 38, 74–80 (2016). Article  CAS  PubMed  Google Scholar  * Popkin, G. The physics of life. _Nature_ 529, 16–18 (2016). Article  CAS  PubMed  Google Scholar  *


Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. _Nature_ 491, 431–434 (2012). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Wang, J. T. et al. Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in _C. elegans_. _eLife_ 3,


e04591 (2014). Article  PubMed  PubMed Central  Google Scholar  * Lang, M. et al. Three-dimensional organization of promyelocytic leukemia nuclear bodies. _J. Cell Sci._ 123, 392–400 (2010).


Article  CAS  PubMed  Google Scholar  * Boisvert, F.-M., van Koningsbruggen, S., Navascués, J. & Lamond, A. I. The multifunctional nucleolus. _Nat. Rev. Mol. Cell Biol._ 8, 574–585


(2007). Article  CAS  PubMed  Google Scholar  * Monneron, A. & Bernhard, W. Fine structural organization of the interphase nucleus in some mammalian cells. _J. Ultrastruct. Res._ 27,


266–288 (1969). Article  CAS  PubMed  Google Scholar  * Hyman, A. A. & Simons, K. Cell biology. Beyond oil and water — phase transitions in cells. _Science_ 337, 1047–1049 (2012).


Article  CAS  PubMed  Google Scholar  * Tatomer, D. C. et al. Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis. _J. Cell


Biol._ 213, 557–570 (2016). Article  CAS  PubMed  PubMed Central  Google Scholar  * Strzelecka, M. et al. Coilin-dependent snRNP assembly is essential for zebrafish embryogenesis. _Nat.


Struct. Mol. Biol._ 17, 403–409 (2010). Article  CAS  PubMed  Google Scholar  * Novotny, I., Blazikova, M., Stanek, D., Herman, P. & Malinsky, J. _In vivo_ kinetics of U4/U6·U5 tri-snRNP


formation in Cajal bodies. _Mol. Biol. Cell_ 22, 513–523 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Strulson, C. A., Molden, R. C., Keating, C. D. & Bevilacqua, P.


C. RNA catalysis through compartmentalization. _Nat. Chem._ 4, 941–946 (2012). Article  CAS  PubMed  Google Scholar  * Deryusheva, S. & Gall, J. G. Small Cajal body-specific RNAs of


_Drosophila_ function in the absence of Cajal bodies. _Mol. Biol. Cell_ 20, 5250–5259 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Davis, B. W. et al. Colocalization and


sequential enzyme activity in aqueous biphasic systems: experiments and modeling. _Biophys. J._ 109, 2182–2194 (2015). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kuznetsova, I.


M., Zaslavsky, B. Y., Breydo, L., Turoverov, K. K. & Uversky, V. N. Beyond the excluded volume effects: mechanistic complexity of the crowded milieu. _Molecules_ 20, 1377–1409 (2015).


Article  PubMed  PubMed Central  CAS  Google Scholar  * Cai, L.-H., Panyukov, S. & Rubinstein, M. Mobility of nonsticky nanoparticles in polymer liquids. _Macromolecules_ 44, 7853–7863


(2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Elbaum-Garfinkle, S. & Brangwynne, C. P. Liquids, fibers, and gels: the many phases of neurodegeneration. _Dev. Cell_ 35,


531–532 (2015). Article  CAS  PubMed  Google Scholar  * Good, M. C., Zalatan, J. G. & Lim, W. A. Scaffold proteins: hubs for controlling the flow of cellular information. _Science_ 332,


680–686 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Castellana, M. et al. Enzyme clustering accelerates processing of intermediates through metabolic channeling. _Nat.


Biotechnol._ 32, 1011–1018 (2014). Article  CAS  PubMed  PubMed Central  Google Scholar  * O'Connell, J. D., Zhao, A., Ellington, A. D. & Marcotte, E. M. Dynamic reorganization of


metabolic enzymes into intracellular bodies. _Annu. Rev. Cell Dev. Biol._ 28, 89–111 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Noree, C., Monfort, E., Shiau, A. K.


& Wilhelm, J. E. Common regulatory control of CTP synthase enzyme activity and filament formation. _Mol. Biol. Cell_ 25, 2282–2290 (2014). Article  PubMed  PubMed Central  Google Scholar


  * Li, H. et al. Sequestration and inhibition of Daxx-mediated transcriptional repression by PML. _Mol. Cell. Biol._ 20, 1784–1796 (2000). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. _Nature_ 467, 167–173 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kshirsagar, M.


& Parker, R. Identification of Edc3p as an enhancer of mRNA decapping in _Saccharomyces cerevisiae_. _Genetics_ 166, 729–739 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar


  * Dunckley, T. & Parker, R. The DCP2 protein is required for mRNA decapping in _Saccharomyces cerevisiae_ and contains a functional MutT motif. _EMBO J._ 18, 5411–5422 (1999). Article


  CAS  PubMed  PubMed Central  Google Scholar  * Bernardi, R. & Pandolfi, P. P. Role of PML and the PML-nuclear body in the control of programmed cell death. _Oncogene_ 22, 9048–9057


(2003). Article  CAS  PubMed  Google Scholar  * Nakagawa, S., Naganuma, T., Shioi, G. & Hirose, T. Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice.


_J. Cell Biol._ 193, 31–39 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Dill, K. A. & Bromberg, S. _Molecular Driving Forces_. (Garland Science, 2011). Google Scholar


  * Flory, P. J. Thermodynamics of high polymer solutions. _J. Chem. Phys._ 10, 51 (1942). Article  CAS  Google Scholar  * Griffin, E. E., Odde, D. J. & Seydoux, G. Regulation of the


MEX-5 gradient by a spatially segregated kinase/phosphatase cycle. _Cell_ 146, 955–968 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Stockmayer, W. Molecular distribution


in condensation polymers. _J. Polymer Sci._ 9, 69–71 (1952). Article  CAS  Google Scholar  * Cohen, R. & Benedek, G. Equilibrium and kinetic theory of polymerization and the sol–gel


transition. _J. Phys. Chem._ 86, 3696–3714 (1982). Article  CAS  Google Scholar  * Huggins, M. L. Solutions of long chain compounds. _J. Chem. Phys._ 9, 440 (1941). Article  CAS  Google


Scholar  * Semenov, A. & Rubinstein, M. Thermoreversible gelation in solutions of associative polymers. 1. Statics. _Macromolecules_ 31, 1373–1385 (1998). Article  CAS  Google Scholar 


Download references ACKNOWLEDGEMENTS The authors thank R. Duronio and C. Weber for discussion and critical comments on the Review. Research on multivalency-driven phase separation is


supported in the Hyman laboratory by the Max Planck Society, and in the Rosen laboratory by the Howard Hughes Medical Institute, the Welch Foundation (I-1544) and a Sara and Frank McKnight


Graduate Fellowship (to S.F.B.). AUTHOR INFORMATION Author notes * Salman F. Banani and Hyun O. Lee: These authors contributed equally to this work. AUTHORS AND AFFILIATIONS * Department of


Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, 75390, Texas, USA Salman F. Banani & Michael K. Rosen * Max Planck Institute of


Molecular Cell Biology and Genetics, 01307, Dresden, Germany Hyun O. Lee & Anthony A. Hyman Authors * Salman F. Banani View author publications You can also search for this author


inPubMed Google Scholar * Hyun O. Lee View author publications You can also search for this author inPubMed Google Scholar * Anthony A. Hyman View author publications You can also search for


this author inPubMed Google Scholar * Michael K. Rosen View author publications You can also search for this author inPubMed Google Scholar CORRESPONDING AUTHORS Correspondence to Anthony


A. Hyman or Michael K. Rosen. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. SUPPLEMENTARY INFORMATION DRIPPING OF P GRANULES. Movie shows


syncytial germ cell nuclei covered in P granules in the germ line of a GFP::PGL-1 worm. The germ line has been dissected and squashed. P granules appear to drip off of the nuclei, fuse, and


round up. From Brangwynne, C. P. _et al_. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. _Science_ 324, 1729–1732 (2009). Reprinted with


permission from AAAS. (MOV 259 kb) DYNAMICS OF FUS BODIES. Timelapse imaging of stress granules in a live HeLa cell expressing FUS-GFP using high-resolution lightsheet microscopy. Movie


courtesy of H. O. Lee and M. Weigert, MPI-CBG, Dresden, Germany. (MOV 28339 kb) FUSION OF STRESS GRANULES. Expanded and rendered movie of the same cell in Supplemental movie 2, showing


fusion of two stress granules visualized through FUS-GFP. Movie courtesy of H. O. Lee and M. Weigert, MPI-CBG, Dresden, Germany. (AVI 60 kb) FORMATION AND MERGING OF PNEPHRIN CLUSTERS. Alexa


488-labeled His8-pNephrin was attached to a DOPC supported lipid bilayer doped (1%) with Ni2+-NTA lipids, and Nck and N-WASP were added. Movie shows TIRF images acquired every minute.


Initial clusters are small and numerous, but merge over time to make larger structures. Reproduced from Banjade, S. & Rosen, M. K. Phase transitions of multivalent proteins can promote


clustering of membrane receptors. _eLife_ 3, e04123 (2014). (AVI 553 kb) SUPPLEMENTARY INFORMATION S5 (BOX) How are condensed phases different from macromolecular complexes? (PDF 147 kb)


SUPPLEMENTARY INFORMATION S6 (TABLE) Various biomolecular condensates and their functions (PDF 156 kb) POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT


SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR FIG. 4 POWERPOINT SLIDE FOR FIG. 5 GLOSSARY * Cajal bodies Biomolecular condensates in eukaryotic nuclei containing coilin and survival motor neuron


protein (SMN) as well as many factors involved in mRNA splicing. Cajal bodies are thought to have a role in assembling spliceosomal small nuclear ribonucleoproteins. * PML nuclear bodies


Biomolecular condensates in eukaryotic nuclei containing promyelocytic leukaemia (PML), death domain-associated protein (DAXX) and Sp100. PML nuclear bodies are thought to have a role in


apoptotic signalling, antiviral defence and transcriptional regulation. * Entropy A measure of disorder in a given system. Specifically, the number of microstates possible for a given state.


Systems tend to approach states that maximize their entropy. * Free energy The energy available in a thermodynamic system to work. Systems tend to approach states that minimize their free


energy. * Stereospecificity A property of binding reactions whereby the specificity is largely dictated by the complementary geometries of the ligand and receptor molecules. * WW domains


Small (∼5 kDa) modular signalling domains found in numerous proteins that contain two conserved tryptophan residues. WW domains bind to proline-containing peptide motifs. * Cation–pi


interactions Noncovalent interactions between positively charged residues (for example, lysine) and pi electrons in aromatic residues (for example, phenylalanine). * Pi-stacking interactions


Attractive interactions between aromatic rings, such as those found in phenylalanine, tyrosine and tryptophan residues. * Dipolar interactions Interactions between two molecules that are


electrically polarized, wherein the partial positive charge on one interacts with the partial negative charge on the other. * Chemical footprinting Use of a small reactive chemical to modify


solvent-exposed sites in a macromolecule, providing information on the structure of that macromolecule. * Chemical potential The partial molar free energy within a system. Mathematically,


the first derivative of free energy with respect to composition. Systems tend to approach states that dissipate gradients in chemical potential. * Histone locus bodies Biomolecular


condensates in eukaryotic nuclei containing nuclear protein, ataxia-telangiectasia locus (NPAT) and FLICE-associated huge protein (FLASH), and thought to be involved in the processing of


histone mRNAs. * Nuage Biomolecular condensates in metazoan germ cells thought to have a role in maintaining germ cell genomic integrity. This class of compartments includes P granules,


polar granules and mammalian nuages. * Paraspeckles Biomolecular condensates in the mammalian nucleus that contain the long non-coding RNA nuclear paraspeckle assembly transcript 1 (NEAT1)


and a variety of RNA-binding and other proteins. The functions of paraspeckles are not well understood, but include storage of certain RNAs. * Balbiani bodies A transient collection of


proteins, RNA and membrane-bound organelles (endoplasmic reticulum, Golgi and mitochondria) found in primary oocytes of all animals observed to date (flies, frogs, mice and humans). * Small


nuclear ribonucleoprotein A RNA–protein complex that is the primary constituent of spliceosomes, the eukaryotic splicing machinery. * Hammerhead ribozyme A catalytic RNA molecule involved in


RNA cleavage found in organisms ranging from bacteria to mammals. * Partition coefficients Measures the enrichment of chemical species into the condensed phase of a two-phase system.


Mathematically, the partition coefficient is defined as the ratio of concentration of the species in the condensed phase to that in the dilute phase. RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Banani, S., Lee, H., Hyman, A. _et al._ Biomolecular condensates: organizers of cellular biochemistry. _Nat Rev Mol Cell Biol_ 18, 285–298


(2017). https://doi.org/10.1038/nrm.2017.7 Download citation * Published: 22 February 2017 * Issue Date: May 2017 * DOI: https://doi.org/10.1038/nrm.2017.7 SHARE THIS ARTICLE Anyone you


share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the


Springer Nature SharedIt content-sharing initiative