Ecology and exploration of the rare biosphere
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN

Play all audios:

KEY POINTS * Microbial-community abundance distributions have a long 'tail' of low-abundance organisms, referred to as the rare biosphere, which often comprises the large majority
of species. * Rare-biosphere microorganisms display specific and sometimes unique ecology and biogeography that can differ substantially from that of more abundant representatives. * The
rare biosphere contributes to a persistent microbial seed bank, contrasting the influence of local microbial extinction and immigration. * Recruitment from the rare biosphere provides a
broad reservoir of ecological function and resiliency (redundancy and flexibility). * Broad time-series studies with rich metadata will improve the study of rare-biosphere dynamics and
conditionally rare taxa. * Study of the rare biosphere is prone to experimental artefacts (sequencing noise) and biological artefacts (dormancy and taphonomic gradients). * The majority of
microbial diversity exists, at least transiently, in the rare biosphere. * Novel rare-biosphere members can be studied through cultivation, targeted phylogenetic mining and single-cell
genomics. ABSTRACT The profound influence of microorganisms on human life and global biogeochemical cycles underlines the value of studying the biogeography of microorganisms, exploring
microbial genomes and expanding our understanding of most microbial species on Earth: that is, those present at low relative abundance. The detection and subsequent analysis of low-abundance
microbial populations — the 'rare biosphere' — have demonstrated the persistence, population dynamics, dispersion and predation of these microbial species. We discuss the ecology
of rare microbial populations, and highlight molecular and computational methods for targeting taxonomic 'blind spots' within the rare biosphere of complex microbial communities.
Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this
journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now
Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer
support SIMILAR CONTENT BEING VIEWED BY OTHERS MICROBIAL DIVERSITY IN EXTREME ENVIRONMENTS Article 09 November 2021 DEFINITION OF THE MICROBIAL RARE BIOSPHERE THROUGH UNSUPERVISED MACHINE
LEARNING Article Open access 02 April 2025 TOWARDS THE BIOGEOGRAPHY OF PROKARYOTIC GENES Article 15 December 2021 CHANGE HISTORY * _ 06 MARCH 2015 On page 6 the paper by Doxey, A. C. _et
al_. entitled 'Aquatic metagenomes implicate _Thaumarchaeota_ in global cobalamin production'. ISME J. 9, 461–471 (2015) should have been cited at the end of the sentence ‘The
recent discovery of thaumarchaeotal vitamin B12 production in aquatic environments also demonstrated winter archaeal abundance at station L4, in contrast to the low relative abundance of
related genes at other sampled time points’ instead of reference 75. We have added this new reference as Ref 181 in the reference list. _ REFERENCES * Woese, C. R. & Fox, G. E.
Phylogenetic structure of the prokaryotic domain: the primary kingdoms. _Proc. Natl Acad. Sci. USA_ 74, 5088–5090 (1977). CAS PubMed PubMed Central Google Scholar * Giovannoni, S. J.,
Britschgi, T. B., Moyer, C. L. & Field, K. G. Genetic diversity in Sargasso Sea bacterioplankton. _Nature_ 345, 60–63 (1990). Article CAS PubMed Google Scholar * Ward, D. M., Weller,
R. & Bateson, M. M. 16S rRNA sequences reveal numerous uncultured inhabitants in a natural community. _Nature_ 345, 63–65 (1990). Article CAS PubMed Google Scholar * Pace, N. R.,
Stahl, D. A., Lane, D. J. & Olsen, G. J. The analysis of natural microbial populations by ribosomal RNA sequences. _Adv. Microbial Ecol._ 9, 1–55 (1986). Article CAS Google Scholar *
Pace, N. R. A molecular view of microbial diversity and the biosphere. _Science_ 276, 734–740 (1997). AN EARLY REVIEW SUMMARIZING MOLECULAR PHYLOGENETIC METHODS FOR STUDYING MICROBIAL
ECOSYSTEMS. Article CAS PubMed Google Scholar * Neufeld, J. D. & Mohn, W. W. in _Molecular Identification, Systematics, and Population Structure of Prokaryotes_ Ch. 7 (ed.
Stackebrandt, E.) (Springer, 2006). Google Scholar * Hughes, J. B., Hellmann, J. J., Ricketts, T. H. & Bohannan, B. J. M. Counting the uncountable: statistical approaches to estimating
microbial diversity. _Appl. Environ. Microbiol._ 67, 4399–4406 (2001). Article CAS PubMed PubMed Central Google Scholar * Neufeld, J. D., Yu, Z., Lam, W. & Mohn, W. W. Serial
analysis of ribosomal sequence tags (SARST): a high-throughput method for profiling complex microbial communities. _Environ. Microbiol._ 6, 131–144 (2004). Article CAS PubMed Google
Scholar * Ashby, M. N., Rine, J., Mongodin, E. F., Nelson, K. E. & Dimster-Denk, D. Serial analysis of rRNA genes and the unexpected dominance of rare members of microbial communities.
_Appl. Environ. Microbiol._ 73, 4532–4542 (2007). Article CAS PubMed PubMed Central Google Scholar * Neufeld, J. D. & Mohn, W. W. Unexpectedly high bacterial diversity in Arctic
tundra relative to boreal forest soils revealed with serial analysis of ribosomal sequence tags (SARST). _Appl. Environ. Microbiol._ 71, 5710–5718 (2005). Article CAS PubMed PubMed
Central Google Scholar * Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. _Proc. Natl Acad. Sci. USA_ 103, 12115–12120 (2006). THIS STUDY WAS
THE FIRST TO RECOGNIZE AND DESCRIBE THE RARE BIOSPHERE WITH THE USE OF HTS. Article CAS PubMed PubMed Central Google Scholar * Baas Becking, L. B. _Geobiologie of Inleiding Tot de
Milieukunde_ (in Dutch) (WP Van Stockum & Zoon, 1934). Google Scholar * De Wit, R. & Bouvier, T. 'Everything is everywhere, but, the environment selects'; what did Baas
Becking and Beijerinck really say? _Environ. Microbiol._ 8, 755–758 (2006). Article PubMed Google Scholar * Reid, A. & Buckley, M. _The Rare Biosphere_ (American Academy of
Microbiology, 2011). Google Scholar * Elshahed, M. S. et al. Novelty and uniqueness patterns of rare members of the soil biosphere. _Appl. Environ. Microbiol._ 74, 5422–5428 (2008). Article
CAS PubMed PubMed Central Google Scholar * Bartram, A. K., Lynch, M. D. J., Stearns, J. C., Moreno-Hagelsieb, G. & Neufeld, J. D. Generation of multi-million 16S rRNA gene
libraries from complex microbial communities by assembling paired-end Illumina reads. _Appl. Environ. Microbiol._ 77, 3846–3852 (2011). Article CAS PubMed PubMed Central Google Scholar
* Lazarevic, V. et al. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. _J. Microbiol. Methods_ 79, 266–271 (2009). Article CAS PubMed PubMed Central
Google Scholar * Caporaso, J. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. _Proc. Natl Acad. Sci. USA_ 108 (Suppl 1), 4516–4522 (2010).
PubMed PubMed Central Google Scholar * Gloor, G. et al. Microbiome profiling by Illumina sequencing of combinatorial sequence-tagged PCR products. _PLoS ONE_ 5, e15406 (2010). Article
CAS PubMed PubMed Central Google Scholar * Pedrós-Alió, C. The rare bacterial biosphere. _Annu. Rev. Mar. Sci._ 4, 449–466 (2012). Article Google Scholar * Galand, P. E., Casamayor, E.
O., Kirchman, D. L. & Lovejoy, C. Ecology of the rare microbial biosphere of the Arctic Ocean. _Proc. Natl Acad. Sci. USA_ 106, 22427–22432 (2009). THIS STUDY EXPLORES THE ECOLOGY,
TAXONOMY AND BIOGEOGRAPHIC TRENDS OF RARE MARINE MICROORGANISMS. Article PubMed PubMed Central Google Scholar * Qin, J. et al. A human gut microbial gene catalogue established by
metagenomic sequencing. _Nature_ 464, 59–65 (2010). Article CAS PubMed PubMed Central Google Scholar * Gobet, A., Quince, C. & Ramette, A. Multivariate Cutoff Level Analysis
(MultiCoLA) of large community data sets. _Nucleic Acids Res._ 38, e155 (2010). Article CAS PubMed PubMed Central Google Scholar * Haegeman, B. et al. Robust estimation of microbial
diversity in theory and in practice. _ISME J._ 7, 1092–1101 (2013). Article PubMed PubMed Central Google Scholar * Shade, A. et al. Conditionally rare taxa disproportionately contribute
to temporal changes in microbial diversity. _mBio_ 5, e01371–14 (2014). THIS STUDY IDENTIFIES CONDITIONALLY RARE TAXA AND INVESTIGATES THEIR ROLE IN TEMPORAL ABUNDANCE DYNAMICS. Article CAS
PubMed PubMed Central Google Scholar * Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: an effective distance metric for microbial community
comparison. _ISME J._ 5, 169–172 (2010). Article PubMed PubMed Central Google Scholar * Caporaso, J. G. et al. Moving pictures of the human microbiome. _Genome Biol._ 12, R50 (2011).
Article PubMed PubMed Central Google Scholar * Kim, E. et al. Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. _Proc. Natl Acad. Sci. USA_ 108,
1496–1500 (2011). Article PubMed PubMed Central Google Scholar * Curtis, T. P., Sloan, W. T. & Scannell, J. W. Estimating prokaryotic diversity and its limits. _Proc. Natl Acad. Sci.
USA_ 99, 10494–10499 (2002). Article CAS PubMed PubMed Central Google Scholar * Curtis, T. P. & Sloan, W. T. Prokaryotic diversity and its limits: microbial community structure in
nature and implications for microbial ecology. _Curr. Opin. Microbiol._ 7, 221–226 (2004). Article PubMed Google Scholar * Curtis, T. P. et al. What is the extent of prokaryotic
diversity? _Phil. Trans. R. Soc. B_ 361, 2023–2037 (2006). Article PubMed PubMed Central Google Scholar * Sloan, W. T., Woodcock, S., Lunn, M., Head, I. M. & Curtis, T. P. Modeling
taxa-abundance distributions in microbial communities using environmental sequence data. _Microb. Ecol._ 53, 443–455 (2006). Article PubMed Google Scholar * Bent, S. J. & Forney, L.
J. The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. _ISME J._ 2, 689–695 (2008). Article CAS PubMed Google Scholar * Kunin, V.,
Engelbrektson, A., Ochman, H. & Hugenholtz, P. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. _Environ. Microbiol._ 12,
118–123 (2010). Article CAS PubMed Google Scholar * Huse, S., Welch, D., Morrison, H. & Sogin, M. Ironing out the wrinkles in the rare biosphere through improved OTU clustering.
_Environ. Microbiol._ 12, 1889–1898 (2010). Article CAS PubMed PubMed Central Google Scholar * Barberán, A., Casamayor, E. O. & Fierer, N. The microbial contribution to
macroecology. _Front. Microbiol._ 5, 203 (2014). Article PubMed PubMed Central Google Scholar * Fierer, N. & Lennon, J. T. The generation and maintenance of diversity in microbial
communities. _Am. J. Bot._ 98, 439–448 (2011). Article PubMed Google Scholar * Pedrós-Alió, C. Dipping into the rare biosphere. _Science_ 315, 192–193 (2007). A PERSPECTIVE ARTICLE
INTRODUCING THE STUDY OF RARE-BIOSPHERE ORGANISMS AT THE BEGINNING OF THE HTS ERA. Article PubMed Google Scholar * Newton, R. J. et al. Shifts in the microbial community composition of
Gulf Coast beaches following beach oiling. _PLoS ONE_ 8, e74265 (2013). Article CAS PubMed PubMed Central Google Scholar * Vergin, K. L., Done, B., Carlson, C. A. & Giovannoni, S.
J. Spatiotemporal distributions of rare bacterioplankton populations indicate adaptive strategies in the oligotrophic ocean. _Aquat. Microb. Ecol._ 71, 1–13 (2013). Article Google Scholar
* Youssef, N. et al. Comparison of species richness estimates obtained using nearly complete fragments and simulated pyrosequencing-generated fragments in 16S rRNA gene-based environmental
surveys. _Appl. Environ. Microbiol._ 75, 5227–5236 (2009). Article CAS PubMed PubMed Central Google Scholar * Gobet, A. et al. Diversity and dynamics of rare and of resident bacterial
populations in coastal sands. _ISME J._ 6, 542–553 (2011). Article PubMed PubMed Central Google Scholar * Bowen, J. L., Crump, B. C., Deegan, L. A. & Hobbie, J. E. Salt marsh
sediment bacteria: their distribution and response to external nutrient inputs. _ISME J._ 3, 924–934 (2009). Article CAS PubMed Google Scholar * Logares, R. et al. Patterns of rare and
abundant marine microbial eukaryotes. _Curr. Biol._ 24, 813–821 (2014). Article CAS PubMed Google Scholar * Youssef, N., Steidley, B. L. & Elshahed, M. S. Novel high-rank
phylogenetic lineages within a sulfur spring (Zodletone spring, Oklahoma, USA) revealed using a combined pyrosequencing/Sanger approach. _Appl. Environ. Microbiol._ 78, 2677–2688 (2012).
Article CAS PubMed PubMed Central Google Scholar * Lynch, M. D., Bartram, A. K. & Neufeld, J. D. Targeted recovery of novel phylogenetic diversity from next-generation sequence
data. _ISME J._ 6, 2067–2077 (2012). THIS STUDY USED PHYLOGENETIC MINING OF HTS DATA TO IDENTIFY TAXONOMIC BLIND SPOTS THROUGH TARGETED GENE RECOVERY. Article CAS PubMed PubMed Central
Google Scholar * Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. _Nature Biotech._ 29,
415–420 (2011). Article CAS Google Scholar * Turnbaugh, P. J. et al. The human microbiome project. _Nature_ 449, 804–810 (2007). Article CAS PubMed PubMed Central Google Scholar *
Gilbert, J. A. et al. The Earth Microbiome Project: meeting report of the 1st EMP meeting on sample selection and acquisition at Argonne National Laboratory October 6th 2010. _Stand. Genomic
Sci._ 3, 249–253 (2010). Article PubMed PubMed Central Google Scholar * Caron, D. A. & Countway, P. D. Hypotheses on the role of the protistan rare biosphere in a changing world.
_Aquat. Microb. Ecol._ 57, 227–238 (2009). Article Google Scholar * Campbell, B. J., Yu, L., Heidelberg, J. F. & Kirchman, D. L. Activity of abundant and rare bacteria in a coastal
ocean. _Proc. Natl Acad. Sci. USA_ 108, 12776–12781 (2011). DISCOVERY OF DISPROPORTIONATE ACTIVITY AMONG RARE MARINE BACTERIA. Article PubMed PubMed Central Google Scholar * Jones, S. E.
& Lennon, J. T. Dormancy contributes to the maintenance of microbial diversity. _Proc. Natl Acad. Sci. USA_ 107, 5881–5886 (2010). Article PubMed PubMed Central Google Scholar *
Besemer, K. et al. Unraveling assembly of stream biofilm communities. _ISME J._ 6, 1459–1468 (2012). Article CAS PubMed PubMed Central Google Scholar * Wilhelm, L. et al. Rare but
active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams. _Environ. Microbiol._ 16, 2514–2524 (2014). Article CAS PubMed Google Scholar * Wilcox, R. M.
& Fuhrman, J. A. Bacterial viruses in coastal seawater: lytic rather than lysogenic production. _Mar. Ecol. Prog. Ser._ 114, 35–45 (1994). Article Google Scholar * Winter, C., Bouvier,
T., Weinbauer, M. G. & Thingstad, T. F. Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited.
_Microbiol. Mol. Biol. Rev._ 74, 42–57 (2010). Article CAS PubMed PubMed Central Google Scholar * Hutchinson, G. E. The paradox of the plankton. _Am. Nat._ 95, 137–145 (1961). Article
Google Scholar * Jürgens, K. & Matz, C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. _Antonie van Leeuwenhoek_ 81, 413–434 (2002).
Article PubMed Google Scholar * Pernthaler, J. Predation on prokaryotes in the water column and its ecological implications. _Nature Rev. Microbiol._ 3, 537–546 (2005). Article Google
Scholar * Janzen, D. H. Herbivores and the number of tree species in tropical forests. _Am. Nat._ 104, 501–528 (1970). Article Google Scholar * Connell, J. H. in _Dynamics of Populations_
(eds den Boer, P. J. & Gradwell, G.) 298–312 (Wageningen, 1971). Google Scholar * Brockhurst, M. A., Fenton, A., Roulston, B. & Rainey, P. B. The impact of phages on interspecific
competition in experimental populations of bacteria. _BMC Ecol._ 6, 19 (2006). Article CAS PubMed PubMed Central Google Scholar * Bell, T., Newman, J. A., Silverman, B. W., Turner, S.
L. & Lilley, A. K. The contribution of species richness and composition to bacterial services. _Nature_ 436, 1157–1160 (2005). Article CAS PubMed Google Scholar * Lennon, J. T. &
Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. _Nature Rev. Microbiol._ 9, 119–130 (2011). Article CAS Google Scholar * Marchant, R., Banat,
I. M., Rahman, T. J. & Berzano, M. The frequency and characteristics of highly thermophilic bacteria in cool soil environments. _Environ. Microbiol._ 4, 595–602 (2002). Article CAS
PubMed Google Scholar * Hubert, C. et al. A constant flux of diverse thermophilic bacteria into the cold Arctic seabed. _Science_ 325, 1541–1544 (2009). THIS STUDY DEMONSTRATES
THERMOPHILIC BACTERIAL IMMIGRATION AND PRESERVATION WITHIN ARCTIC SEDIMENT AND IDENTIFIES INFLUENCES ON COMMUNITY COMPOSITION. Article CAS PubMed Google Scholar * de Rezende, J. R. et
al. Dispersal of thermophilic _Desulfotomaculum_ endospores into Baltic Sea sediments over thousands of years. _ISME J._ 7, 72–84 (2012). Article CAS PubMed PubMed Central Google Scholar
* Müller, A. L. et al. Endospores of thermophilic bacteria as tracers of microbial dispersal by ocean currents. _ISME J._ 8, 1153–1165 (2013). Article CAS PubMed PubMed Central Google
Scholar * Gilbert, J. A. et al. The seasonal structure of microbial communities in the Western English Channel. _Environ. Microbiol._ 11, 3132–3139 (2009). Article CAS PubMed Google
Scholar * Gilbert, J. A. et al. Defining seasonal marine microbial community dynamics. _ISME J._ 6, 298–308 (2011). Article CAS PubMed PubMed Central Google Scholar * Caporaso, J. G.,
Paszkiewicz, K., Field, D., Knight, R. & Gilbert, J. A. The Western English Channel contains a persistent microbial seed bank. _ISME J._ 6, 1089–1093 (2012). DEEP SEQUENCING OF A SINGLE
TIME POINT, COMPARED TO A 6-YEAR TIME SERIES, RESULTED IN THE IDENTIFICATION OF RECRUITMENT FROM THE RARE BIOSPHERE OR MICROBIAL SEED BANK RATHER THAN EXTINCTION AND RECOLONIZATION. Article
CAS PubMed Google Scholar * Brazelton, W. J. et al. Archaea and bacteria with surprising microdiversity show shifts in dominance over 1,000-year time scales in hydrothermal chimneys.
_Proc. Natl Acad. Sci. USA_ 107, 1612–1617 (2010). Article PubMed PubMed Central Google Scholar * Sjöstedt, J. et al. Recruitment of members from the rare biosphere of marine
bacterioplankton communities after an environmental disturbance. _Appl. Environ. Microbiol._ 78, 1361–1369 (2012). Article CAS PubMed PubMed Central Google Scholar * Anderson, D. M.,
Cembella, A. D. & Hallegraeff, G. M. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. _Annu. Rev. Mar. Sci._
4, 143–176 (2012). Article Google Scholar * Gibbons, S. M. et al. Evidence for a persistent microbial seed bank throughout the global ocean. _Proc. Natl Acad. Sci. USA_ 110, 4651–4655
(2013). SINGLE-LOCATION (ENGLISH CHANNEL STATION L4) DEEP SEQUENCING SHOWS SUBSTANTIAL TAXONOMIC OVERLAP WITH GLOBAL MARINE SAMPLING AND STRONGLY SUGGESTS THAT THERE IS A RICH AND PERSISTENT
MICROBIAL SEED BANK. Article PubMed PubMed Central Google Scholar * Webster, N. S. et al. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge
symbionts. _Environ. Microbiol._ 12, 2070–2082 (2010). CAS PubMed PubMed Central Google Scholar * Taylor, M. W. et al. “Sponge-specific” bacteria are widespread (but rare) in diverse
marine environments. _ISME J._ 7, 438–443 (2012). Article CAS PubMed PubMed Central Google Scholar * Walke, J. B. et al. Amphibian skin may select for rare environmental microbes. _ISME
J._ 8, 2207–2217 (2014). Article CAS PubMed PubMed Central Google Scholar * Crump, B. C., Amaral-Zettler, L. A. & Kling, G. W. Microbial diversity in Arctic freshwaters is
structured by inoculation of microbes from soils. _ISME J._ 6, 1629–1639 (2012). Article CAS PubMed PubMed Central Google Scholar * Kirchman, D. L., Cottrell, M. T. & Lovejoy, C.
The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. _Environ. Microbiol._ 12, 1132–1143 (2010). Article CAS PubMed Google
Scholar * Hugoni, M. et al. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. _Proc. Natl Acad. Sci. USA_ 110, 6004–6009 (2013).
Article CAS PubMed PubMed Central Google Scholar * Shade, A. et al. Fundamentals of microbial community resistance and resilience. _Front. Microbiol._ 3, 417 (2012). Article PubMed
PubMed Central Google Scholar * Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. _Proc. Natl Acad. Sci. USA_ 96,
1463–1468 (1999). Article CAS PubMed PubMed Central Google Scholar * Shade, A. et al. Resistance, resilience and recovery: aquatic bacterial dynamics after water column disturbance.
_Environ. Microbiol._ 13, 2752–2767 (2011). Article CAS PubMed Google Scholar * Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. _Science_ 304,
1629–1633 (2004). Article CAS PubMed Google Scholar * Miki, T., Ushio, M., Fukui, S. & Kondoh, M. Functional diversity of microbial decomposers facilitates plant coexistence in a
plant–microbe–soil feedback model. _Proc. Natl Acad. Sci. USA_ 107, 14251–14256 (2010). Article PubMed PubMed Central Google Scholar * Montoya, J. P. et al. High rates of N2 fixation by
unicellular diazotrophs in the oligotrophic Pacific Ocean. _Nature_ 430, 1027–1032 (2004). Article CAS PubMed Google Scholar * Ze, X., Duncan, S. H., Louis, P. & Flint, H. J.
_Ruminococcus bromii_ is a keystone species for the degradation of resistant starch in the human colon. _ISME J._ 6, 1535–1543 (2012). Article CAS PubMed PubMed Central Google Scholar *
Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. _Front. Microbiol._ 5, 219 (2014). Article PubMed PubMed Central
Google Scholar * Williams, R. J., Howe, A. & Hofmockel, K. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. _Front. Microbiol._ 5, 358 (2014).
Article PubMed PubMed Central Google Scholar * Morris, J. J., Lenski, R. E. & Zinser, E. R. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. _mBio_
3, e00036–12 (2012). Article PubMed PubMed Central Google Scholar * Giovannoni, S. J. & Stingl, U. Molecular diversity and ecology of microbial plankton. _Nature_ 437, 343–348
(2005). Article CAS PubMed Google Scholar * Pholchan, M. K., Baptista, J. C., Davenport, R. J., Sloan, W. T. & Curtis, T. P. Microbial community assembly, theory and rare functions.
_Front. Microbiol._ 4, 68 (2013). Article PubMed PubMed Central Google Scholar * Bartram, A. K. et al. Exploring links between pH and bacterial community composition in soils from the
Craibstone Experimental Farm. _FEMS Microbiol. Ecol._ 87, 403–415 (2014). Article CAS PubMed Google Scholar * Pester, M., Bittner, N., Deevong, P., Wagner, M. & Loy, A. A 'rare
biosphere' microorganism contributes to sulfate reduction in a peatland. _ISME J._ 4, 1591–1602 (2010). Article CAS PubMed Google Scholar * Neufeld, J. D. et al. Stable-isotope
probing implicates _Methylophaga_ spp. and novel _Gammaproteobacteria_ in marine methanol and methylamine metabolism. _ISME J._ 1, 480–491 (2007). Article CAS PubMed Google Scholar *
Jørgensen, B. B. Big sulfur bacteria. _ISME J._ 4, 1083–1084 (2010). Article PubMed Google Scholar * Jørgensen, B. B. & Gallardo, V. A. _Thioploca_ spp.: filamentous sulfur bacteria
with nitrate vacuoles. _FEMS Microbiol. Ecol._ 28, 301–313 (1999). Article Google Scholar * Schulz, H. et al. Dense populations of a giant sulfur bacterium in Namibian shelf sediments.
_Science_ 284, 493–495 (1999). Article CAS PubMed Google Scholar * Jørgensen, B. B., Dunker, R., Grünke, S. & Røy, H. Filamentous sulfur bacteria, _Beggiatoa_ spp., in arctic marine
sediments (Svalbard, 79° N). _FEMS Microbiol. Ecol._ 73, 500–513 (2010). PubMed Google Scholar * Hol, W. H. G. et al. Reduction of rare soil microbes modifies plant–herbivore interactions.
_Ecol. Lett._ 13, 292–301 (2010). Article PubMed Google Scholar * Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using
sparse linear regression. _PLoS ONE_ 9, e102451 (2014). Article CAS PubMed PubMed Central Google Scholar * Reeder, J. & Knight, R. The 'rare biosphere': a reality check.
_Nature Methods_ 6, 636–637 (2009). Article CAS PubMed Google Scholar * Mello, A., Murat, C. & Bonfante, P. Truffles: much more than a prized and local fungal delicacy. _FEMS
Microbiol. Lett._ 260, 1–8 (2006). Article CAS PubMed Google Scholar * Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. _Nature_ 499, 431–437
(2013). A TARGETED STUDY OF THE GENOMICS OF NOVEL LINEAGES (MICROBIAL DARK MATTER) THAT GREATLY EXPANDS GENOMIC REPRESENTATION OF MICROBIAL LIFE. Article CAS PubMed Google Scholar * Wu,
D. et al. Stalking the fourth domain in metagenomic data: searching for, discovering, and interpreting novel, deep branches in marker gene phylogenetic trees. _PLoS ONE_ 6, e18011 (2011).
Article CAS PubMed PubMed Central Google Scholar * Jensen, S., Lynch, M. D. J., Ray, J. L., Neufeld, J. D. & Hovland, M. Norwegian deep-water coral reefs: cultivation and molecular
analysis of planktonic microbial communities. _Environ. Microbiol._ http://dx.doi.org/10.1111/1462-2920.12531 (2014). * Hugenholtz, P., Goebel, B. M. & Pace, N. R. Impact of
culture-independent studies on the emerging phylogenetic view of bacterial diversity. _J. Bacteriol._ 180, 4765–4774 (1998). CAS PubMed PubMed Central Google Scholar * Goodman, A. L. et
al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. _Proc. Natl Acad. Sci. USA_ 108, 6252–6257 (2011). Article PubMed PubMed
Central Google Scholar * Pinhassi, J., Zweifel, U. L. & Hagstroëm, A. Dominant marine bacterioplankton species found among colony-forming bacteria. _Appl. Environ. Microbiol._ 63,
3359–3366 (1997). CAS PubMed PubMed Central Google Scholar * Zengler, K. et al. Cultivating the uncultured. _Proc. Natl Acad. Sci. USA_ 99, 15681–15686 (2002). Article CAS PubMed
PubMed Central Google Scholar * Joseph, S. J., Hugenholtz, P., Sangwan, P., Osborne, C. A. & Janssen, P. H. Laboratory cultivation of widespread and previously uncultured soil
bacteria. _Appl. Environ. Microbiol._ 69, 7210–7215 (2003). Article CAS PubMed PubMed Central Google Scholar * Leadbetter, J. R. Cultivation of recalcitrant microbes: cells are alive,
well and revealing their secrets in the 21st century laboratory. _Curr. Opin. Microbiol._ 6, 274–281 (2003). Article CAS PubMed Google Scholar * Nichols, D. Cultivation gives context to
the microbial ecologist. _FEMS Microbiol. Ecol._ 60, 351–357 (2007). Article CAS PubMed Google Scholar * Lee, K. C.-Y. et al. _Chthonomonas calidirosea_ gen. nov., sp. nov., an aerobic,
pigmented, thermophilic micro-organism of a novel bacterial class, _Chthonomonadetes_ classis nov., of the newly described phylum _Armatimonadetes_ originally designated candidate division
OP10. _Int. J. Syst. Evol. Microbiol._ 61, 2482–2490 (2011). Article CAS PubMed Google Scholar * Neufeld, J. D., Li, J. & Mohn, W. W. Scratching the surface of the rare biosphere
with ribosomal sequence tag primers. _FEMS Microbiol. Lett._ 283, 146–153 (2008). Article CAS PubMed Google Scholar * Derakshani, M., Lukow, T. & Liesack, W. Novel bacterial lineages
at the (sub) division level as detected by signature nucleotide-targeted recovery of 16S rRNA genes from bulk soil and rice roots of flooded rice microcosms. _Appl. Environ. Microbiol._ 67,
623–631 (2001). Article CAS PubMed PubMed Central Google Scholar * Nakai, R. et al. Microflorae of aquatic moss pillars in a freshwater lake, East Antarctica, based on fatty acid and
16S rRNA gene analyses. _Polar Biol._ 35, 425–433 (2012). Article Google Scholar * Couradeau, E. et al. An early-branching microbialite cyanobacterium forms intracellular carbonates.
_Science_ 336, 459–462 (2012). Article CAS PubMed Google Scholar * Di Rienzi, S. C. et al. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate
phylum sibling to Cyanobacteria. _eLife_ 2, e01102 (2013). Article CAS PubMed PubMed Central Google Scholar * Engelbrektson, A. et al. Experimental factors affecting PCR-based estimates
of microbial species richness and evenness. _ISME J._ 4, 642–647 (2010). Article CAS PubMed Google Scholar * Kennedy, K., Hall, M. W., Lynch, M. D. J., Moreno-Hagelsieb, G. &
Neufeld, J. D. Evaluating bias of Illumina-based bacterial 16S rRNA gene profiles. _Appl. Environ. Microbiol._ 80, 5717–5722 (2014). Article CAS PubMed PubMed Central Google Scholar *
Pinto, A. J. & Raskin, L. PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. _PLoS ONE_ 7, e43093 (2012). Article CAS PubMed PubMed Central
Google Scholar * Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. _Nature_ 486, 207–214 (2012). * Kowalchuk, G. A., Speksnijder, A. G.
C. L., Zhang, K., Goodman, R. M. & Veen, J. A. Finding the needles in the metagenome haystack. _Microb. Ecol._ 53, 475–485 (2007). Article PubMed PubMed Central Google Scholar *
Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. _Nature Biotech._ 31, 533–538 (2013). Article CAS
Google Scholar * Frisli, T., Haverkamp, T., Jakobsen, K., Stenseth, N. C. & Rudi, K. Estimation of metagenome size and structure in an experimental soil microbiota from low coverage
next-generation sequence data. _J. Appl. Microbiol._ 114, 141–151 (2013). Article CAS PubMed Google Scholar * Gans, J., Wolinsky, M. & Dunbar, J. Computational improvements reveal
great bacterial diversity and high metal toxicity in soil. _Science_ 309, 1387–1390 (2005). Article CAS PubMed Google Scholar * Schloss, P. D. & Handelsman, J. Toward a census of
bacteria in soil. _PLoS Comput. Biol._ 2, 786–793 (2006). Article CAS Google Scholar * Marcy, Y. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and
uncultivated TM7 microbes from the human mouth. _Proc. Natl Acad. Sci. USA_ 104, 11889–11894 (2007). Article CAS PubMed PubMed Central Google Scholar * Podar, M. et al. Targeted access
to the genomes of low-abundance organisms in complex microbial communities. _Appl. Environ. Microbiol._ 73, 3205–3214 (2007). Article CAS PubMed PubMed Central Google Scholar *
Stoffels, M., Ludwig, W. & Schleifer, K. H. rRNA probe-based cell fishing of bacteria. _Environ. Microbiol._ 1, 259–271 (1999). Article CAS PubMed Google Scholar * Binga, E. K.,
Lasken, R. S. & Neufeld, J. D. Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. _ISME J._ 2, 233–241 (2008). Article CAS PubMed
Google Scholar * Neufeld, J. D. et al. DNA stable-isotope probing. _Nature Protoc._ 2, 860–866 (2007). Article CAS Google Scholar * Verastegui, Y. et al. Multisubstrate isotope
labeling and metagenomic analysis of active soil bacterial communities. _mBio_ 5, e01157–14 (2014). Article CAS PubMed PubMed Central Google Scholar * Green, S. J. & Minz, D.
Suicide polymerase endonuclease restriction, a novel technique for enhancing PCR amplification of minor DNA templates. _Appl. Environ. Microbiol._ 71, 4721–4727 (2005). Article CAS PubMed
PubMed Central Google Scholar * Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities.
_ISME J._ 6, 343–351 (2011). Article CAS PubMed PubMed Central Google Scholar * Dufrêne, M. & Legendre, P. Species assemblages and indicator species: the need for a flexible
asymmetrical approach. _Ecol. Monogr._ 67, 345–366 (1997). Google Scholar * Blainey, P. C. The future is now: single-cell genomics of bacteria and archaea. _FEMS Microbiol. Rev._ 37,
407–427 (2013). Article CAS PubMed Google Scholar * Shade, A. et al. Culturing captures members of the soil rare biosphere. _Environ. Microbiol._ 14, 2247–2252 (2012). Article PubMed
PubMed Central Google Scholar * Whittaker, R. H. Evolution and measurement of species diversity. _Taxon_ 21, 213–251 (1972). Article Google Scholar * Whittaker, R. H. Vegetation of the
Siskiyou mountains, Oregon and California. _Ecol. Monogr._ 30, 279–338 (1960). Article Google Scholar * Woodcock, S. et al. Neutral assembly of bacterial communities. _FEMS Microbiol.
Ecol._ 62, 171–180 (2007). Article CAS PubMed Google Scholar * Bell, G. The co-distribution of species in relation to the neutral theory of community ecology. _Ecology_ 86, 1757–1770
(2005). Article Google Scholar * Ofiţeru, I. D. et al. Combined niche and neutral effects in a microbial wastewater treatment community. _Proc. Natl Acad. Sci. USA_ 107, 15345–15350
(2010). Article PubMed PubMed Central Google Scholar * Wang, J. et al. Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes.
_ISME J._ 7, 1310–1321 (2013). Article CAS PubMed PubMed Central Google Scholar * Soininen, J. Macroecology of unicellular organisms — patterns and processes. _Environ. Microbiol. Rep._
4, 10–22 (2012). Article PubMed Google Scholar * Green, J. & Bohannan, B. J. M. Spatial scaling of microbial biodiversity. _Trends Ecol. Evol._ 21, 501–507 (2006). Article PubMed
Google Scholar * Hughes, J. B. & Bohannan, B. J. M. in _Molecular Microbial Ecology Manual_ Vol. 1, Ch. 7.01 (eds Kowalchuk, G. A. et al.) (Springer, 2004). Google Scholar * Connolly,
S. R. et al. Commonness and rarity in the marine biosphere. _Proc. Natl Acad. Sci. USA_ 111, 8524–8529 (2014). Article CAS PubMed PubMed Central Google Scholar * McGill, B. J. et al.
Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. _Ecol. Lett._ 10, 995–1015 (2007). Article PubMed Google Scholar *
Van de Peer, Y., Chapelle, S. & De Wachter, R. A quantitative map of nucleotide substitution rates in bacterial rRNA. _Nucleic Acids Res._ 24, 3381–3391 (1996). Article CAS PubMed
PubMed Central Google Scholar * Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy.
_Appl. Environ. Microbiol._ 73, 5261–5267 (2007). Article CAS PubMed PubMed Central Google Scholar * Human Microbiome Project Consortium. A framework for human microbiome research.
_Nature_ 486, 215–221 (2012). * Klein, D. Microbial communities in nature: a postgenomic perspective. _Microbe_ 2, 591–595 (2007). Google Scholar * Levy-Booth, D. J. et al. Cycling of
extracellular DNA in the soil environment. _Soil Biol. Biochem._ 39, 2977–2991 (2007). Article CAS Google Scholar * Nogva, H. K., Dromtorp, S., Nissen, H. & Rudi, K. Ethidium
monoazide for DNA-based differentiation of viable and dead bacteria by 5′-nuclease PCR. _Biotechniques_ 34, 804–813 (2003). Article CAS PubMed Google Scholar * Rudi, K., Moen, B.,
Drømtorp, S. M. & Holck, A. L. Use of ethidium monoazide and PCR in combination for quantification of viable and dead cells in complex samples. _Appl. Environ. Microbiol._ 71, 1018–1024
(2005). Article CAS PubMed PubMed Central Google Scholar * Nocker, A., Cheung, C.-Y. & Camper, A. K. Comparison of propidium monoazide with ethidium monoazide for differentiation of
live versus dead bacteria by selective removal of DNA from dead cells. _J. Microbiol. Methods_ 67, 310–320 (2006). Article CAS PubMed Google Scholar * Pan, Y. & Breidt, F.
Enumeration of viable _Listeria monocytogenes_ cells by real-time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells. _Appl. Environ. Microbiol._ 73, 8028–8031
(2007). Article CAS PubMed PubMed Central Google Scholar * Bachar, A. et al. Soil microbial abundance and diversity along a low precipitation gradient. _Microb. Ecol._ 60, 453–461
(2010). Article PubMed Google Scholar * Wagner, A. O., Malin, C., Knapp, B. A. & Illmer, P. Removal of free extracellular DNA from environmental samples by ethidium monoazide and
propidium monoazide. _Appl. Environ. Microbiol._ 74, 2537–2539 (2008). Article CAS PubMed PubMed Central Google Scholar * Flekna, G. et al. Insufficient differentiation of live and dead
_Campylobacter jejuni_ and _Listeria monocytogenes_ cells by ethidium monoazide (EMA) compromises EMA/real-time PCR. _Res. Microbiol._ 158, 405–412 (2007). Article CAS PubMed Google
Scholar * Kobayashi, H., Oethinger, M., Tuohy, M., Hall, G. & Bauer, T. Unsuitable distinction between viable and dead _Staphylococcus aureus_ and _Staphylococcus epidermidis_ by
ethidium bromide monoazide. _Lett. Appl. Microbiol._ 48, 633–638 (2009). Article CAS PubMed Google Scholar * Keer, J. & Birch, L. Molecular methods for the assessment of bacterial
viability. _J. Microbiol. Methods_ 53, 175–183 (2003). Article CAS PubMed Google Scholar * Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an
indicator of microbial activity in environmental communities: limitations and uses. _ISME J._ 7, 2061–2068 (2013). Article CAS PubMed PubMed Central Google Scholar * Goodrich, J. K. et
al. Conducting a microbiome study. _Cell_ 158, 250–262 (2014). Article CAS PubMed PubMed Central Google Scholar * Patin, N. V., Kunin, V., Lidström, U. & Ashby, M. N. Effects of OTU
clustering and PCR artifacts on microbial diversity estimates. _Microb. Ecol._ 65, 709–719 (2013). Article CAS PubMed Google Scholar * Schloss, P. D., Gevers, D. & Westcott, S. L.
Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. _PLoS ONE_ 6, e27310 (2011). AN EVALUATION OF PCR AND SEQUENCING ARTEFACTS IN SSU RRNA-BASED
STUDIES, INCLUDING A PROPOSED QUALITY-FILTERING PIPELINE. Article CAS PubMed PubMed Central Google Scholar * Lee, C. K. et al. Groundtruthing next-gen sequencing for microbial ecology —
biases and errors in community structure estimates from PCR amplicon pyrosequencing. _PLoS ONE_ 7, e44224 (2012). Article CAS PubMed PubMed Central Google Scholar * Edgar, R. C., Haas,
B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. _Bioinformatics_ 27, 2194–2200 (2011). Article CAS PubMed PubMed Central
Google Scholar * Huber, T., Faulkner, G. & Hugenholtz, P. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. _Bioinformatics_ 20, 2317–2319 (2004).
Article CAS PubMed Google Scholar * Quince, C., Lanzen, A., Davenport, R. J. & Turnbaugh, P. J. Removing noise from pyrosequenced amplicons. _BMC Bioinformatics_ 12, 38 (2011).
Article PubMed PubMed Central Google Scholar * Quince, C. et al. Accurate determination of microbial diversity from 454 pyrosequencing data. _Nature Methods_ 6, 639–641 (2009). Article
CAS PubMed Google Scholar * Claesson, M. J. et al. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S
rRNA gene regions. _Nucleic Acids Res._ 38, e200 (2010). Article CAS PubMed PubMed Central Google Scholar * Eren, A. M., Vineis, J. H., Morrison, H. G. & Sogin, M. L. A filtering
method to generate high quality short reads using Illumina paired-end technology. _PLoS ONE_ 8, e66643 (2013). Article CAS PubMed PubMed Central Google Scholar * Schloss, P. D.
Secondary structure improves OTU assignments of 16S rRNA gene sequences. _ISME J._ 7, 457–460 (2013). Article CAS PubMed Google Scholar * Nawrocki, E. P., Kolbe, D. L. & Eddy, S. R.
Infernal 1.0: inference of RNA alignments. _Bioinformatics_ 25, 1335–1337 (2009). Article CAS PubMed PubMed Central Google Scholar * Pruesse, E., Peplies, J. & Glöckner, F. O. SINA:
accurate high-throughput multiple sequence alignment of ribosomal RNA genes. _Bioinformatics_ 28, 1823–1829 (2012). Article CAS PubMed PubMed Central Google Scholar * Cannone, J. J. et
al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. _BMC Bioinformatics_ 3, 1–31 (2002).
Article Google Scholar * Doxey, A. C. et al. Aquatic metagenomes implicate _Thaumarchaeota_ in global cobalamin production. _ISME J_. 9, 461–471 (2015). Article CAS PubMed Google
Scholar Download references ACKNOWLEDGEMENTS The authors appreciate comments provided by M. L. Sogin and B. J. Butler during the preparation of this manuscript. They acknowledge support
from an Early Researcher Award (Government of Ontario), the Canadian Institutes of Health Research (CIHR) and the Natural Sciences and Engineering Research Council of Canada (NSERC). AUTHOR
INFORMATION AUTHORS AND AFFILIATIONS * Department of Biology, University of Waterloo, Waterloo, N2L 3G1, Ontario, Canada Michael D. J. Lynch & Josh D. Neufeld Authors * Michael D. J.
Lynch View author publications You can also search for this author inPubMed Google Scholar * Josh D. Neufeld View author publications You can also search for this author inPubMed Google
Scholar CORRESPONDING AUTHOR Correspondence to Josh D. Neufeld. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests. RELATED LINKS FURTHER
INFORMATION Comparative RNA Web Site International Census of Marine Microbes POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 GLOSSARY * Rare biosphere Although this
has been an arbitrarily defined term, subject to variable abundance thresholds (for example, <0.1% of total community relative abundance), the rare biosphere may be considered as the
collective of rare viable or dormant microbial taxa that are found in a given environmental sample at a specific time point. * Bioprospecting The screening of biological systems (for
example, genomes or ecosystems) for novel components of industrial, commercial or scientific value. * Conditionally rare taxa Species that are rare under some conditions but can become
abundant when provided with optimal growth conditions. * Resilience The ability of a community to regain functionality following a disturbance event. This ability is linked to role
redundancy conferred through species diversity. * Operational taxonomic units (OTUs). Commonly used theoretical framework for relating sequence differences to discrete taxonomic entities.
The OTU remains a surrogate for a taxonomic rank (for example, species) and is typically based on a specified nucleotide identity (for example, 97% for small subunit ribosomal RNA
marker-gene studies). * Biogeography The study of species distribution through geographic space and time. * Copiotrophic Microorganisms that grow optimally in nutrient-rich environments and
are generally adapted to rapidly exploit available resources. * Killing-the-winner hypothesis A negative frequency-dependent selection, in which abundant or active bacterial types are
affected by viral pressure. This mechanism would promote the survival and viability of rare types of microorganisms, maintaining high diversity. * Taphonomic gradient A temporal gradient
involving decay and fossilization of cells. In the context of studying the rare biosphere, the term refers to the detection of nucleic acids from deceased organisms. * Microbial seed bank A
collection of dormant microorganisms that can respond to favourable environmental conditions. * _r_-selected growth Growth strategy favouring rapid reproduction and exponential population
size increase. It is common in organisms such as bacteria, insects and weeds. * _K_-selected growth Growth strategy in which abundance tends to be stable and close to the maximum capacity in
an environment. Populations undergoing _K_-selected growth often have larger body sizes, slower growth rates and longer life cycles. * Epilimnion Top layer in a thermally stratified lake,
typically with increased dissolved oxygen concentrations. * Hypolimnion Dense bottom layer of a thermally stratified lake (below the epilimnion). * Black Queen hypothesis A theory explaining
reductive evolution in free-living organisms and dependence on co-occurring microorganisms. Natural selection favours the loss of costly biological functions ('leaky' functions)
as long as the function is retained by a subset of the community and provides an indispensable public good. * Synapomorphic A derived characteristic shared by two or more taxa and their most
recent common ancestor. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Lynch, M., Neufeld, J. Ecology and exploration of the rare biosphere. _Nat Rev
Microbiol_ 13, 217–229 (2015). https://doi.org/10.1038/nrmicro3400 Download citation * Published: 02 March 2015 * Issue Date: April 2015 * DOI: https://doi.org/10.1038/nrmicro3400 SHARE THIS
ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard
Provided by the Springer Nature SharedIt content-sharing initiative