Neurotrophins and their receptors: a convergence point for many signalling pathways


Neurotrophins and their receptors: a convergence point for many signalling pathways

Play all audios:


KEY POINTS * Neurotrophins are most often associated with the promotion of neuronal growth and survival, but their influence on brain function is significantly broader — they are also


involved in plastic and pathological processes. * Clues to the multiple functions of neurotrophins come from the study of mutant animals. In particular, as knocking out any neurotrophin gene


leads to a lethal phenotype, the analysis of heterozygous mice has pointed to roles for the neurotrophins in locomotor and feeding behaviours. * The fact that the actions of the


neurotrophins depend on two receptor classes — the Trk receptors and p75 — significantly increases the degrees of freedom for neurotrophin signalling in terms of specificity, affinity and


downstream signalling pathways. * Neurotrophins have significant direct effects on synaptic transmission, plasticity and their possible behavioural correlates. However, the downstream


mechanisms that mediate these effects are not completely understood. Several signalling pathways have been put forward as candidates, and recently ion channels have joined the list of


potential effectors of the synaptic actions of neurotrophins. * Transactivation of neurotrophin receptors by G protein-coupled receptors has emerged as a new theme in the biology of


neurotrophin function. Although the precise role of this transactivation is unknown, one possibility is that it adds a safety factor that might protect neurons from death in the absence of


neurotrophins. * Neurotrophin receptors, particularly p75, might have an important role in the control of axonal regeneration, as they act as co-receptors for Nogo, a protein that is known


to inhibit axonal growth. In addition, the neurotrophins can modulate the response of growth cones to guidance molecules such as semaphorins. * There is some genetic evidence that points to


a specific contribution of the neurotrophins to psychiatric disease. Specifically, polymorphisms of brain-derived neurotrophic factor have been linked to depression, bipolar disorders and


schizophrenia. ABSTRACT The neurotrophins are a family of proteins that are essential for the development of the vertebrate nervous system. Each neurotrophin can signal through two different


types of cell surface receptor — the Trk receptor tyrosine kinases and the p75 neurotrophin receptor. Given the wide range of activities that are now associated with neurotrophins, it is


probable that additional regulatory events and signalling systems are involved. Here, I review recent findings that neurotrophins, in addition to promoting survival and differentiation,


exert various effects through surprising interactions with other receptors and ion channels. Access through your institution Buy or subscribe This is a preview of subscription content,


access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $189.00 per year only $15.75 per issue Learn


more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS


OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS MASTER REGULATORS OF NEUROGENESIS: THE DYNAMIC


ROLES OF EPHRIN RECEPTORS ACROSS DIVERSE CELLULAR NICHES Article Open access 06 November 2024 EVOLUTION OF CENTRAL NEURAL CIRCUITS: STATE OF THE ART AND PERSPECTIVES Article 26 October 2022


NEUREXINS: MOLECULAR CODES FOR SHAPING NEURONAL SYNAPSES Article 08 January 2021 REFERENCES * McAllister, A., Katz, L. & Lo, D. Neurotrophins and synaptic plasticity. _Annu. Rev.


Neurosci._ 22, 295–318 (1999). CAS  PubMed  Google Scholar  * Poo, M. -M. Neurotrophins as synaptic modulators. _Nature Rev. Neurosci._ 2, 24–31 (2001). CAS  Google Scholar  * Huang, E.


& Reichardt, L. Neurotrophins: roles in neuronal development and function. _Annu. Rev. Neurosci._ 24, 677–736 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Chao, M. V. &


Hempstead, B. L. p75 and trk: a two-receptor system. _Trends Neurosci._ 18, 321–326 (1995). CAS  PubMed  Google Scholar  * Kaplan, D. R. & Miller, F. D. Neurotrophin signal transduction


in the nervous system. _Curr. Opin. Neurobiol._ 10, 381–391 (2000). CAS  PubMed  Google Scholar  * Dechant, G. & Barde, Y. -A. The neurotrophin receptor p75NTR: novel functions and


implications for diseases of the nervous system. _Nature Neurosci._ 5, 1131–1136 (2002). CAS  PubMed  Google Scholar  * Gall, C. & Isackson, P. Limbic seizures increase neuronal


production of messenger RNA for nerve growth factor. _Science_ 245, 758–761 (1989). CAS  PubMed  Google Scholar  * Blochl, A. & Thoenen, H. Characterization of nerve growth factor


release from hippocampal neurons: evidence for a constitutive and an unconventional sodium-dependent regulated pathway. _Eur. J. Neurosci._ 7, 1220–1228 (1995). CAS  PubMed  Google Scholar 


* Wang, X. H. & Poo, M. -M. Potentiation of developing synapses by postsynaptic release of NT-4. _Neuron_ 19, 825–835 (1997). CAS  PubMed  Google Scholar  * Gall, C. Regulation of brain


neurotrophin expression by physiological activity. _Trends Pharmacol. Sci._ 13, 401–403 (1992). CAS  PubMed  Google Scholar  * Schoups, A., Elliott, R., Friedman, W. & Black, I. NGF and


BDNF are differentially modulated by visual experience in the developing geniculocortical pathway. _Brain Res. Dev._ 86, 326–334 (1995). CAS  Google Scholar  * Lein, E., Hohn, A. &


Shatz, C. Dynamic regulation of BDNF and NT-3 expression during visual system development. _J. Comp. Neurol._ 420, 1–18 (2000). CAS  PubMed  Google Scholar  * Kohara, K., Kitamura, A.,


Morishima, M. & Tsumoto, T. Activity-dependent transfer of brain-derived neurotrophic factor to postsynaptic neurons. _Science_ 291, 2419–2423 (2001). CAS  PubMed  Google Scholar  *


Balkowiec, A. & Katz, D. Cellular mechanisms regulating activity-dependent release of native brain-derived neurotrophic factor from hippocampal neurons. _J. Neurosci._ 22, 10399–10407


(2002). CAS  PubMed  PubMed Central  Google Scholar  * Chen, K. et al. Disruption of a single allele of the nerve growth factor gene results in atrophy of basal forebrain cholinergic neurons


and memory deficits. _J. Neurosci._ 17, 7288–7296 (1997). CAS  PubMed  PubMed Central  Google Scholar  * Lyons, W. E. et al. Brain-derived neurotrophic factor-deficient mice develop


aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. _Proc. Natl Acad. Sci. USA_ 96, 15239–15244 (1999). CAS  PubMed  PubMed Central  Google Scholar  *


Kernie, S., Liebl, D. & Parada, L. BDNF regulates eating behavior and locomotor activity in mice. _EMBO J._ 19, 1290–1300 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Rios, M.


et al. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. _Mol. Endocrinol._ 15, 1748–1757 (2001). PROFOUND EFFECTS ON


FEEDING AND AGGRESSIVE BEHAVIOURS HAVE BEEN OBSERVED IN THREE DIFFERENT LINES OF MICE WITH REDUCED LEVELS OF BDNF. THESE RESULTS INDICATE THAT A PARTIAL DEPLETION OF BDNF CAN HAVE A KEY ROLE


IN REGULATING BEHAVIOURAL RESPONSES, IN THIS CASE, THROUGH SEROTONERGIC ABNORMALITIES. CAS  PubMed  Google Scholar  * Korte, M. et al. Hippocampal long-term potentiation is impaired in mice


lacking brain-derived neurotrophic factor. _Proc. Natl Acad. Sci. USA_ 92, 8856–8860 (1995). CAS  PubMed  PubMed Central  Google Scholar  * Patterson, S. et al. Recombinant BDNF rescues


deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. _Neuron_ 16, 1137–1145 (1996). CAS  PubMed  Google Scholar  * Heymach, J. V. & Shooter, E. M. The


biosynthesis of neurotrophin heterodimers by transfected mammalian cells. _J. Biol. Chem._ 270, 12297–12304 (1995). CAS  PubMed  Google Scholar  * Mowla, S. J. et al. Biosynthesis and


post-translational processing of the precursor to brain-derived neurotrophic factor. _J. Biol. Chem._ 276, 12660–12666 (2001). CAS  PubMed  Google Scholar  * Dechant, G. et al. Expression


and binding characteristics of the BDNF receptor chick trkB. _Development_ 119, 545–558 (1993). CAS  PubMed  Google Scholar  * Mahadeo, D., Kaplan, L., Chao, M. V. & Hempstead, B. L.


High affinity nerve growth factor binding displays a faster rate of association than p140(trk) binding — implications for multisubunit polypeptide receptors. _J. Biol. Chem._ 269, 6884–6891


(1994). CAS  PubMed  Google Scholar  * Schropel, A., von Schack, D., Dechant, G. & Barde, Y. -A. Early expression of the nerve growth factor receptor ctrkA in chick sympathetic and


sensory ganglia. _Mol. Cell. Neurosci._ 6, 544–556 (1995). CAS  PubMed  Google Scholar  * Arevalo, J. et al. TrkA immunoglobulin-like ligand binding domains inhibit spontaneous activation of


the receptor. _Mol. Cell Biol._ 20, 5908–5916 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Esposito, D. et al. The cytoplasmic and transmembrane domains of the p75 and TrkA


receptors regulate high affinity binding to nerve growth factor. _J. Biol. Chem._ 276, 32687–32695 (2001). CAS  PubMed  Google Scholar  * Hempstead, B. L., Martin-Zanca, D., Kaplan, D. R.,


Parada, L. F. & Chao, M. V. High-affinity NGF binding requires co-expression of the trk proto-oncogene and the low-affinity NGF receptor. _Nature_ 350, 678–683 (1991). CAS  PubMed 


Google Scholar  * Benedetti, M., Levi, A. & Chao, M. V. Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness. _Proc.


Natl Acad. Sci. USA_ 90, 7859–7863 (1993). CAS  PubMed  PubMed Central  Google Scholar  * Bibel, M., Hoppe, E. & Barde, Y. Biochemical and functional interactions between the


neurotrophin receptors trk and p75NTR. _EMBO J._ 18, 616–622 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Baloh, R., Enomoto, H., Johnson, E. & Milbrandt, J. The GDNF family


ligands and receptors — implications for neural development. _Curr. Opin. Neurobiol._ 10, 103–110 (2000). CAS  PubMed  Google Scholar  * Ginty, D. & Segal, R. Retrograde neurotrophin


signaling: Trk-ing along the axon. _Curr. Opin. Neurobiol._ 12, 268–274 (2002). CAS  PubMed  Google Scholar  * Grimes, M., Beattie, E. & Mobley, W. A signaling organelle containing the


nerve growth factor-activated receptor tyrosine kinase, TrkA. _Proc. Natl Acad. Sci. USA_ 94, 9909–9914 (1997). CAS  PubMed  PubMed Central  Google Scholar  * Patapoutian, A. &


Reichardt, L. Trk receptors: mediators of neurotrophin action. _Curr. Opin. Neurobiol._ 11, 272–280 (2001). CAS  PubMed  Google Scholar  * Hempstead, B. The many faces of p75NTR. _Curr.


Opin. Neurobiol._ 12, 260–267 (2002). CAS  PubMed  Google Scholar  * Roux, P. & Barker, P. Neurotrophin signaling through the p75 neurotrophin receptor. _Prog. Neurobiol._ 67, 203–233


(2002). CAS  PubMed  Google Scholar  * Lonze, B. & Ginty, D. Function and regulation of CREB family transcription factors in the nervous system. _Neuron_ 35, 605–623 (2002). CAS  PubMed


  Google Scholar  * York, R. et al. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. _Nature_ 392, 622–626 (1998). CAS  PubMed  Google Scholar  * Majdan, M.


& Miller, F. Neuronal life and death decisions: functional antagonism between the Trk and p75 neurotrophin receptors. _Int. J. Dev. Neurosci._ 17, 153–161 (1999). CAS  PubMed  Google


Scholar  * Dowling, P. et al. Upregulated p75NTR neurotrophin receptor on glial cells in MS plaques. _Neurology_ 53, 1676–1682 (1999). CAS  PubMed  Google Scholar  * Roux, P., Colicos, M.,


Barker, P. & Kennedy, T. p75 neurotrophin receptor expression is induced in apoptotic neurons after seizure. _J. Neurosci._ 19, 6887–6896 (1999). CAS  PubMed  PubMed Central  Google


Scholar  * Beattie, M. et al. ProNGF induces p75-mediated death of oligodendrocytes following spinal cord injury. _Neuron_ 36, 375–386 (2002). CAS  PubMed  PubMed Central  Google Scholar  *


Harrington, A. W., Kim, J. Y. & Yoon, S. O. Activation of Rac GTPase by p75 is necessary for c-_jun_ N-terminal kinase-mediated apoptosis. _J. Neurosci._ 22, 156–166 (2002). CAS  PubMed


  PubMed Central  Google Scholar  * Khursigara, G. et al. A pro-survival function for the p75 receptor death domain mediated via the caspase recruitment domain receptor interacting protein


2. _J. Neurosci._ 21, 5854–5863 (2001). CAS  PubMed  PubMed Central  Google Scholar  * DeFreitas, M., McQuillen, P. & Shatz, C. A novel p75NTR signaling pathway promotes survival, not


death, of immunopurified neocortical subplate neurons. _J. Neurosci._ 21, 5121–5129 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Lee, R., Kermani, P., Teng, K. & Hempstead, B.


Regulation of cell survival by secreted proneurotrophins. _Science_ 294, 1945–1948 (2001). THE PRECURSOR FORMS OF NEUROTROPHINS HAVE BEEN IMPLICATED IN THE FOLDING AND PROCESSING OF THE


MATURE PROTEINS. THIS PAPER INDICATES THAT THE PRO-SEQUENCE OF NGF PREFERENTIALLY BINDS TO THE P75 RECEPTOR. CAS  PubMed  Google Scholar  * Chao, M. V. Growth factor signaling: where is the


specificity? _Cell_ 68, 995–997 (1992). CAS  PubMed  Google Scholar  * Lohof, A. M., Ip, N. & Poo, M. -M. Potentiation of developing neuromuscular synapses by the neurotrophins NT-3 and


BDNF. _Nature_ 363, 350–353 (1993). CAS  PubMed  Google Scholar  * Kang, H. & Schuman, E. M. Long-lasting neurotrophin-induced enhancement of synaptic transmission in the adult


hippocampus. _Science_ 267, 1658–1662 (1995). CAS  PubMed  Google Scholar  * Levine, E. S., Dreyfus, C. F., Black, I. B. & Plummer, M. R. Brain-derived neurotrophic factor rapidly


enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. _Proc. Natl Acad. Sci. USA_ 92, 8074–8077 (1995). CAS  PubMed  PubMed Central  Google


Scholar  * Xie, C. et al. Deficient long-term memory and long-lasting long-term potentiation in mice with a targeted deletion of neurotrophin-4. _Proc. Natl Acad. Sci. USA_ 97, 8116–8121


(2000). CAS  PubMed  PubMed Central  Google Scholar  * Korte, M. et al. Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic


factor mutant mice. _Proc. Natl Acad. Sci. USA_ 93, 12547–12552 (1996). CAS  PubMed  PubMed Central  Google Scholar  * Schuman, E. Neurotrophin regulation of synaptic transmission. _Curr.


Opin. Neurobiol._ 9, 105–109 (1999). CAS  PubMed  Google Scholar  * Schinder, A. & Poo, M. -M. The neurotrophin hypothesis for synaptic plasticity. _Trends Neurosci._ 23, 639–645 (2000).


CAS  PubMed  Google Scholar  * Yang, F. et al. PI-3 kinase and IP3 are both necessary and sufficient to mediate NT3-induced synaptic potentiation. _Nature Neurosci._ 4, 19–28 (2001). CAS 


PubMed  Google Scholar  * Minichiello, L. et al. Essential role for TrkB receptors in hippocampus-mediated learning. _Neuron_ 24, 401–414 (1999). CAS  PubMed  Google Scholar  * Minichiello,


L. et al. Mechanism of TrkB-mediated hippocampal long-term potentiation. _Neuron_ 36, 121–137 (2002). CAS  PubMed  Google Scholar  * Peterson, D. A., Dickinson-Anson, H. A., Leppert, J. T.,


Lee, K. -F. & Gage, F. H. Central neuronal loss and behavioral impairment in mice lacking neurotrophin receptor p75. _J. Comp. Neurol._ 404, 1–20 (1999). CAS  PubMed  Google Scholar  *


von Schack, D. et al. Complete ablation of the neurotrophin receptor p75NTR causes defects both in the nervous and the vascular system. _Nature Neurosci._ 4, 977–978 (2001). CAS  PubMed 


Google Scholar  * Dalva, M. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. _Cell_ 103, 945–956 (2000). CAS  PubMed  Google Scholar  * Grunwald,


I. et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. _Neuron_ 32, 1027–1040 (2001). CAS  PubMed  Google Scholar  * Henderson, J. et al. The


receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. _Neuron_ 32, 1041–1056 (2001). CAS  PubMed  Google Scholar  * Takasu, M., Dalva, M., Zigmond, R. & Greenberg,


M. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. _Science_ 295, 491–495 (2002). CAS  PubMed  Google Scholar  * Montell, C., Birnbaumer, L.


& Flockerzi, V. The TRP channels, a remarkably functional family. _Cell_ 108, 595–598 (2002). CAS  PubMed  Google Scholar  * Li, H., Xu, X. & Montell, C. Activation of a


TRPC3-dependent cation current through the neurotrophin BDNF. _Neuron_ 24, 261–273 (1999). BDNF BINDING TO TRKB PRODUCED A RAPID INFLUX OF CATIONS THROUGH TRPC3 THAT WAS DEPENDENT ON


ACTIVATION OF PHOSPHOLIPASE C. AN INTERACTION BETWEEN TRKB RECEPTORS AND TRPC3 ION CHANNELS WAS OBSERVED, INDICATING THAT ION CHANNELS MIGHT BE CLOSELY ASSOCIATED WITH RECEPTOR TYROSINE


KINASES. CAS  PubMed  Google Scholar  * Caterina, M. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. _Nature_ 389, 816–824 (1997). CAS  PubMed  Google


Scholar  * Shu, X. & Mendell, L. Neurotrophins and hyperalgesia. _Proc. Natl Acad. Sci. USA_ 96, 7693–7696 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Chuang, H. -h. et al.


Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. _Nature_ 411, 957–962 (2001). THIS STUDY SHOWS THAT THE CAPSAICIN (TRPV1) RECEPTOR


IS ACTIVATED THROUGH NGF BINDING TO TRKA RECEPTORS. THE INTERACTION BETWEEN A RECEPTOR TYROSINE KINASE AND A PAIN-RELATED CHANNEL PROVIDES A MECHANISM FOR THE ABILITY OF SENSORY NEURONS TO


RESPOND TO NGF-MEDIATED HEAT SENSITIVITY AND ALSO POINTS TO A MECHANISM FOR THE HEIGHTENED HYPERALGESIA THAT IS OBSERVED AFTER ADMINISTRATION OF NEUROTROPHINS IN CLINICAL TRIALS OF


NEURODEGENERATIVE DISEASES. CAS  PubMed  Google Scholar  * Johagen, M. et al. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer's disease.


_Dement. Geriat. Cogn._ 9, 246–257 (1998). Google Scholar  * Thoenen, H. & Sendtner, M. Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic


approaches. _Nature Neurosci._ 5, S1046–S1050 (2002). Google Scholar  * Lin, S. et al. BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and


hippocampal postsynaptic densities. _Brain Res. Mol. Brain Res._ 55, 20–27 (1998). CAS  PubMed  Google Scholar  * Tucker, K. & Fadool, D. Neurotrophin modulation of voltage-gated


potassium channels in rat through TrkB receptors is time and sensory experience dependent. _J. Physiol. (Lond.)_ 542, 413–429 (2002). CAS  Google Scholar  * Figurov, A., Pozzo-Miller, L.,


Olafsson, T., Wang, B. & Lu, B. Regulation of synaptic responses to high-frequency stimulation and LTP by neurotrophins in the hippocampus. _Nature_ 381, 706–709 (1996). CAS  PubMed 


Google Scholar  * Gottschalk, W., Pozzo-Miller, L., Figurov, A. & Lu, B. Presynaptic modulation of synaptic transmission and plasticity by brain-derived neurotrophic factor in the


developing hippocampus. _J. Neurosci._ 18, 6830–6839 (1998). CAS  PubMed  PubMed Central  Google Scholar  * Xu, B. et al. The role of brain-derived neurotrophic factors in the mature


hippocampus: modulation of long-term potentiation through a presynaptic mechanism involving TrkB. _J. Neurosci._ 20, 6888–6897 (2000). CAS  PubMed  PubMed Central  Google Scholar  *


Kovalchuk, Y., Hanse, E., Kafitz, K. & Konnerth, A. Postsynaptic induction of BDNF-mediated long-term potentiation. _Science_ 295, 1729–1734 (2002). CAS  PubMed  Google Scholar  *


Balkowiec, A., Kunze, D. & Katz, D. Brain-derived neurotrophic factor acutely inhibits AMPA-mediated currents in developing sensory relay neurons. _J. Neurosci._ 20, 1904–1911 (2000).


CAS  PubMed  PubMed Central  Google Scholar  * Carroll, R., Beattie, E., von Zastrow, M. & Malenka, R. Role of AMPA receptor endocytosis in synaptic plasticity. _Nature Rev. Neurosci._


2, 315–324 (2001). CAS  Google Scholar  * Blum, R., Kafitz, K. & Konnerth, A. Neurotrophin-evoked depolarization requires the sodium channel NaV1.9. _Nature_ 419, 687–693 (2002). CAS 


PubMed  Google Scholar  * Kafitz, K., Rose, C., Thoenen, H. & Konnerth, A. Neurotrophin-evoked rapid excitation through TrkB receptors. _Nature_ 401, 918–921 (1999). A REMARKABLY RAPID


RESPONSE OF A SODIUM CHANNEL BY BDNF TREATMENT IS DOCUMENTED IN REFERENCES 79 AND 80. CAS  PubMed  Google Scholar  * Choi, D. -Y., Toledo-Aral, J., Segal, R. & Halegoua, S. Sustained


signaling by phospholipase C-γ mediates nerve growth factor-triggered gene expression. _Mol. Cell Biol._ 21, 2695–2705 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Toledo-Aral, J.,


Brehm, P., Halegoua, S. & Mandel, G. A single pulse of nerve growth factor triggers long-term neuronal excitability through sodium channel gene induction. _Neuron_ 14, 607–611 (1995).


CAS  PubMed  Google Scholar  * Arevalo, J. et al. A novel mutation within the extracellular domain of TrkA causes constitutive receptor activation. _Oncogene_ 20, 1229–1234 (2001). CAS 


PubMed  Google Scholar  * Daub, H., Weiss, F. U., Wallasch, C. & Ullrich, A. Role of transactivation of the EGF receptor in signalling by G-protein coupled receptors. _Nature_ 379,


557–560 (1996). CAS  PubMed  Google Scholar  * Luttrell, L., Daaka, Y. & Lefkowitz, R. Regulation of tyrosine kinase cascades by G-protein-coupled receptors. _Curr. Opin. Cell Biol._ 11,


177–183 (1999). CAS  PubMed  Google Scholar  * Lee, F. & Chao, M. Activation of Trk neurotrophin receptors in the absence of neurotrophins. _Proc. Natl Acad. Sci. USA_ 98, 3555–3560


(2001). CAS  PubMed  PubMed Central  Google Scholar  * Lee, F. S., Ragagopal, R., Kim, A. H., Chang, P. & Chao, M. V. Activation of Trk neurotrophin receptor signaling by pituitary


adenylate cyclase-activating polypeptides. _J. Biol. Chem._ 277, 9096–9102 (2002). CAS  PubMed  Google Scholar  * Takei, N. et al. Pituitary adenylate cyclase-activating polypeptide promotes


the survival of basal forebrain cholinergic neurons _in vitro_ and _in vivo_: comparison with effects of nerve growth factor. _Eur. J. Neurosci._ 12, 2273–2280 (2000). CAS  PubMed  Google


Scholar  * Williams, L. R. et al. Continuous infusion of NGF prevents basal forebrain neuronal death after fimbria fornix transection. _Proc. Natl Acad. Sci. USA_ 83, 9231–9235 (1986). CAS 


PubMed  PubMed Central  Google Scholar  * Kotecha, S. et al. A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. _Neuron_ 35,


1111–1122 (2002). CAS  PubMed  Google Scholar  * Otto, C. et al. Impairment of mossy fiber long-term potentiation and associative learning in pituitary adenylate cyclase activating


polypeptide type I receptor-deficient mice. _J. Neurosci._ 21, 5520–5527 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Hashimoto, H., Shintani, N. & Baba, A. Higher brain


functions of PACAP and a homologous _Drosophila_ memory gene _amnesiac_: insights from knockouts and mutants. _Biochem. Biophys. Res. Commun._ 297, 427–432 (2002). CAS  PubMed  Google


Scholar  * Ledent, C. et al. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. _Nature_ 388, 674–678 (1997). CAS  PubMed  Google Scholar  *


Airaksinen, M. & Saarma, M. The GDNF family: signalling, biological functions and therapeutic value. _Nature Rev. Neurosci._ 3, 383–394 (2002). CAS  Google Scholar  * Tsui-Pierchala, B.,


Milbrandt, J. & Johnson, E. NGF utilizes c-Ret via a novel GFL-independent, inter-RTK signaling mechanism to maintain the trophic status of mature sympathetic neurons. _Neuron_ 33,


261–273 (2002). CAS  PubMed  Google Scholar  * Duman, R., Heninger, G. & Nestler, E. A molecular and cellular theory of depression. _Arch. Gen. Psychiatry_ 54, 597–606 (1997). CAS 


PubMed  Google Scholar  * Cai, D., Shen, Y., DeBellard, M., Tang, S. & Filbin, M. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a


cAMP-dependent mechanism. _Neuron_ 22, 89–101 (1999). CAS  PubMed  Google Scholar  * Luo, Y., Raible, D. & Raper, J. Collapsin, a protein in brain that induces the collapse and paralysis


of neuronal growth cones. _Cell_ 75, 217–227 (1993). CAS  PubMed  Google Scholar  * Tuttle, R. & O'Leary, D. Neurotrophins rapidly modulate growth cone response in the axon


guidance molecule, collapsin-1. _Mol. Cell. Neurosci._ 11, 1–8 (1998). CAS  PubMed  Google Scholar  * Dontchev, V. & Letourneau, P. Nerve growth factor and semaphorin 3A signaling


pathways interact in regulating sensory neuronal growth cone motility. _J. Neurosci._ 22, 6659–6669 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Fournier, A., GrandPre, T. &


Strittmatter, S. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. _Nature_ 409, 341–346 (2001). CAS  PubMed  Google Scholar  * Wang, K. et al.


Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. _Nature_ 417, 941–944 (2002). CAS  PubMed  Google Scholar  * Liu, B., Fournier, A., GrandPre,


T. & Strittmatter, S. Myelin-associated glycoprotein as a functional ligand for the Nogo-66 receptor. _Science_ 297, 1190–1193 (2002). CAS  PubMed  Google Scholar  * Domeniconi, M. et


al. Myelin-associated glycoprotein interacts with the Nogo-66 receptor to inhibit neurite outgrowth. _Neuron_ 35, 283–290 (2002). CAS  PubMed  Google Scholar  * Wang, K., Kim, J.,


Sivasankaran, R., Segal, R. & He, Z. p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. _Nature_ 420, 74–78 (2002). CAS  PubMed  Google Scholar  * Wong, S. et


al. A p75NTR and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein. _Nature Neurosci._ 5, 1302–1308 (2002). THESE PAPERS MERGE NEUROTROPHIN RECEPTOR


SIGNALLING TO INHIBITION OF REGENERATION IN THE CNS THROUGH THE ACTIONS OF THREE UNRELATED PROTEINS — NOGO, P75 AND MAG. CAS  PubMed  Google Scholar  * Yamashita, T., Higuchi, H. &


Tohyama, M. The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. _J. Cell Biol._ 157, 565–570 (2002). AN IMPORTANT LINK IS MADE BETWEEN THE ABILITY OF MAG TO


BLOCK AXONAL GROWTH AND RHO ACTIVITY THROUGH THE P75 RECEPTOR. THE RESULTS LED TO THE EXPERIMENTS SHOWING THAT THE P75 AND NOGO RECEPTORS ACT IN A COMPLEX. CAS  PubMed  PubMed Central 


Google Scholar  * Yamashita, T., Tucker, K. & Barde, Y. Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. _Neuron_ 24, 585–593 (1999). CAS  PubMed 


Google Scholar  * Walsh, G., Krol, K., Crutcher, K. & Kawaja, M. Enhanced neurotrophin-induced axon growth in myelinated portions of the CNS in mice lacking the p75 neurotrophin


receptor. _J. Neurosci._ 19, 4155–4168 (1999). CAS  PubMed  PubMed Central  Google Scholar  * Dobrowsky, R. T. & Carter, B. D. p75 neurotrophin receptor signaling: mechanisms for


neurotrophic modulation of cell stress? _J. Neurosci. Res._ 61, 237–243 (2000). CAS  PubMed  Google Scholar  * Cosgaya, J. & Shooter, E. Binding of nerve growth factor to its p75


receptor in stressed cells induces selective IκB-β degradation and NF-κB nuclear translocation. _J. Neurochem._ 79, 391–399 (2001). CAS  PubMed  Google Scholar  * Sklar, P. et al.


Family-based asssociation study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. _Mol. Psychiatry_ 7, 579–593 (2002). CAS  PubMed  Google Scholar  * Neves-Pereira,


M. et al. The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. _Am. J. Hum. Genet._ 71, 651–655 (2002). CAS


  PubMed  PubMed Central  Google Scholar  * Sen, S. et al. A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression.


_Neuropsychopharmacology_ 28, 397–401 (2003). CAS  PubMed  Google Scholar  * Egan, M. et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and


hippocampal function. _Cell_ 112, 257–269 (2003). THIS STUDY IS THE FIRST TO SHOW THAT A HUMAN POLYMORPHISM IN BDNF IS ASSOCIATED WITH MEMORY DEFICITS. A SINGLE AMINO ACID VARIATION IN THE


PRO-DOMAIN OF BDNF ACCOUNTS FOR THE ABILITY OF BDNF TO UNDERGO PROPER SECRETION. CAS  PubMed  Google Scholar  * Ventriglia, M. et al. Association between the BDNF 196 A/G polymorphism and


sporadic Alzheimer's disease. _Mol. Psychiatry_ 7, 136–137 (2002). CAS  PubMed  Google Scholar  * Smith, M., Makino, S., Kvetnansky, R. & Post, R. Stress alters the expression of


brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. _J. Neurosci._ 15, 1768–1777 (1995). CAS  PubMed  PubMed Central  Google Scholar  * Ueyama, T. et al.


Immobilization stress reduced the expression of neurotrophins and their receptors in the rat brain. _Neurosci. Res._ 28, 103–110 (1997). CAS  PubMed  Google Scholar  * Shirayama, Y., Chen,


A., Nakagawa, S., Russell, D. & Duman, R. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. _J. Neurosci._ 22, 3251–3261 (2002).


ADMINISTRATION OF EXOGENOUS BDNF EXERTED PROFOUND POSITIVE EFFECTS IN FORCED SWIM AND LEARNED HELPLESSNESS ASSAYS, INDICATING THAT BDNF SIGNALLING MIGHT BE RELATED TO DEPRESSION. CAS  PubMed


  PubMed Central  Google Scholar  * Elliott, T. & Shadbolt, N. Competition for neurotrophic factors: mathematical analysis. _Neural Comput._ 10, 1939–1981 (1998). CAS  PubMed  Google


Scholar  * Crowley, C. et al. Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. _Cell_ 76, 1001–1012


(1994). CAS  PubMed  Google Scholar  * Bartoletti, A. et al. Heterozygous knock-out mice for brain-derived neurotrophic factor show a pathway-specific impairment of long-term potentiation


but normal critical period for monocular deprivation. _J. Neurosci._ 22, 10072–10077 (2002). CAS  PubMed  PubMed Central  Google Scholar  * Dluzen, D. et al. Evaluation of nigrostriatal


dopaminergic function in adult +/+ and +/− BDNF mutant mice. _Exp. Neurol._ 170, 121–128 (2001). CAS  PubMed  Google Scholar  * Carroll, P., Lewin, G., Koltzenburg, M., Toyka, K. &


Thoenen, H. A role for BDNF in mechanosensation. _Nature Neurosci._ 1, 42–46 (1998). CAS  PubMed  Google Scholar  * Ernfors, P., Lee, K. F. & Jaenisch, R. Mice lacking brain-derived


neurotrophic factor develop with sensory deficits. _Nature_ 368, 147–150 (1994). CAS  PubMed  Google Scholar  * Bianchi, L. et al. Degeneration of vestibular neurons in late embryogenesis of


both heterozygous and homozygous _BDNF_ null mutant mice. _Development_ 122, 1965–1973 (1996). CAS  PubMed  Google Scholar  * Elmer, E. et al. Suppressed kindling epileptogenesis and


perturbed _BDNF_ and _TrkB_ gene regulation in _NT-3_ mutant mice. _Exp. Neurol._ 145, 93–103 (1997). CAS  PubMed  Google Scholar  * Donovan, M., Hahn, R., Tessarollo, L. & Hempstead, B.


Neurotrophin-3 is required for mammalian cardiac development: identification of an essential nonneuronal neurotrophin function. _Nature Genet._ 14, 210–213 (1996). CAS  PubMed  Google


Scholar  * Airaksinen, M. et al. Specific subtypes of cutaneous mechanoreceptors require neurotrophin-3 following peripheral target innervation. _Neuron_ 16, 287–295 (1996). CAS  PubMed 


Google Scholar  * Ernfors, P., Lee, K. -F., Kucera, J. & Jaenisch, R. Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive


afferents. _Cell_ 77, 503–512 (1994). CAS  PubMed  Google Scholar  * DiStefano, P., Chelsea, D., Schick, C. & McKelvy, J. Involvement of a metalloprotease in low-affinity nerve growth


factor receptor truncation: inhibition of truncation _in vitro_ and _in vivo_. _J. Neurosci._ 13, 2405–2414 (1993). CAS  PubMed  PubMed Central  Google Scholar  * Schecterson, L., Kanning,


K., Hudson, M. & Bothwell, M. The neurotrophin receptor p75 is cleaved by regulated intramembranous proteolysis. _Soc. Neurosci. Abstr._ 27, 822.10 (2002). INTRAMEMBRANOUS CLEAVAGE OF


NOTCH, THE AMYLOID PRECURSOR PROTEIN AND ERBB4 RECEPTORS GENERATES INTRACELLULAR CYTOPLASMIC FRAGMENTS THAT PRODUCE MARKED CHANGES IN SIGNALLING AND TRANSCRIPTIONAL ACTIVITIES. THE CLEAVAGE


OF P75 BY A Γ-SECRETASE REVEALS A NEW MECHANISM FOR TRANSMITTING NEUROTROPHIN SIGNALS FROM THE CELL SURFACE TO INTRACELLULAR LOCATIONS. Google Scholar  * Brown, M., Ye, J., Rawson, R. &


Goldstein, J. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. _Cell_ 100, 391–398 (2000). CAS  PubMed  Google Scholar  * Fahnestock, M.,


Michalski, B., Xu, B. & Coughlin, M. The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer's disease. _Mol.


Cell. Neurosci._ 18, 210–220 (2001). CAS  PubMed  Google Scholar  * Cosgaya, J. M., Chan, J. R. & Shooter, E. M. The neurotrophin receptor p75NTR as a positive modulator of myelination.


_Science_ 298, 1245–1248 (2002). CAS  PubMed  Google Scholar  * Wu, C., Lai, C. F. & Mobley, W. C. Nerve growth factor activates persistent Rap1 signaling in endosomes. _J. Neurosci._


21, 5406–5416 (2001). CAS  PubMed  PubMed Central  Google Scholar  * Lee, F., Rajagopal, R., Kim, A., Chang, P. & Chao, M. Activation of Trk neurotrophin receptor signaling by pituitary


adenylate cyclase-activating polypeptides. _J. Biol. Chem._ 277, 9096–9102 (2002). CAS  PubMed  Google Scholar  * Chen, M. et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor


and an antigen for monclonal antibody IN-1. _Nature_ 403, 434–439 (2000). CAS  PubMed  Google Scholar  * Ernfors, P., Henschen, A., Olson, L. & Persson, H. Expression of nerve growth


factor receptor mRNA is developmentally regulated and increased after axotomy in rat spinal cord motoneurons. _Neuron_ 2, 1605–1613 (1989). CAS  PubMed  Google Scholar  * Koliatsos, V.,


Crawford, T. & Price, D. Axotomy induces nerve growth factor receptor immunoreactivity in spinal motor neurons. _Brain Res._ 549, 297–304 (1991). CAS  PubMed  Google Scholar  * Hayes,


R., Wiley, R. & Armstrong, D. Induction of nerve growth factor receptor (p75NGFr) mRNA within hypoglossal motoneurons following axonal injury. _Brain Res. Mol. Brain Res._ 15, 291–297


(1992). CAS  PubMed  Google Scholar  * Martinez-Murillo, R., Fernandez, A., Bentura, M. & Rodrigo, J. Subcellular localization of low-affinity nerve growth factor receptor-immunoreactive


protein in adult rat Purkinje cells following traumatic injury. _Exp. Brain Res._ 119, 47–57 (1998). CAS  PubMed  Google Scholar  * Friedman, W. Neurotrophins induce death of hippocampal


neurons via the p75 receptor. _J. Neurosci._ 20, 6340–6346 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Kokaia, Z., Andsberg, G., Martinez-Serrano, A. & Lindvall, O. Focal


cerebral ischemia in rats induces expression of p75 neurotrophin receptor in resistant striatal cholinergic neurons. _Neuroscience_ 84, 1113–1125 (1998). CAS  PubMed  Google Scholar  * Park,


J., Lee, J., Sato, T. & Koh, J. Co-induction of p75NTR and p75NTR-associated death executor in neurons after zinc exposure in cortical culture or transient ischemia in the rat. _J.


Neurosci._ 20, 9096–9103 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Mufson, E. & Kordower, J. Cortical neurons express nerve growth factor receptors in advanced age and


Alzheimer's disease. _Proc. Natl Acad. Sci. USA_ 89, 569–573 (1992). CAS  PubMed  PubMed Central  Google Scholar  * Lemke, G. & Chao, M. V. Axons regulate Schwann cell expression of


major myelin and NGF receptor genes. _Development_ 102, 499–504 (1988). CAS  PubMed  Google Scholar  * Taniuchi, M., Clark, H., Schweitzer, J. & Johnson, E. Expression of nerve growth


factor receptors by Schwann cells of axotomized peripheral nerves: ultrastructural location, suppression by axonal contact, and binding properties. _J. Neurosci._ 8, 664–681 (1988). CAS 


PubMed  PubMed Central  Google Scholar  * Chang, A., Nishiyama, A., Peterson, J., Prineas, J. & Trapp, B. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple


sclerosis lesions. _J. Neurosci._ 20, 6404–6412 (2000). CAS  PubMed  PubMed Central  Google Scholar  * Calza, L., Giardino, L., Pozza, M., Micera, A. & Aloe, L. Time-course changes of


nerve growth factor, corticotropin-releasing hormone, and nitric oxide synthase isoforms and their possible role in the development of inflammatory response in experimental allergic


encephalomyelitis. _Proc. Natl Acad. Sci. USA_ 94, 3368–3373 (1997). CAS  PubMed  PubMed Central  Google Scholar  * Nataf, S. et al. Low affinity NGF receptor expression in the central


nervous system during experimental allergic encephalomyelitis. _J. Neurosci. Res._ 52, 83–92 (1998). CAS  PubMed  Google Scholar  * Hu, X. -Y. et al. Increased p75NTR expression in


hippocampal neurons containing hyperphosphorylated τ in Alzheimer patients. _Exp. Neurol._ 178, 104–111 (2002). CAS  PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS The


assistance of Albert Kim is gratefully acknowledged. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New


York, 10016, New York, USA Moses V. Chao Authors * Moses V. Chao View author publications You can also search for this author inPubMed Google Scholar RELATED LINKS RELATED LINKS DATABASES


SWISS-PROT BDNF CREB GDNF JNK Kv1.3 MAG Nav1.9 NF-κB NGF Nogo PACAP Semaphorin 3A Shc TrkA TrkB TrkC Tumour necrosis factor OMIM Alzheimer disease GLOSSARY * LONG-TERM POTENTIATION (LTP). An


enduring increase in the amplitude of excitatory postsynaptic potentials as a result of high-frequency (tetanic) stimulation of afferent pathways. It is measured both as the amplitude of


excitatory postsynaptic potentials and as the magnitude of the postsynaptic-cell population spike. LTP is most often studied in the hippocampus and is often considered to be the cellular


basis of learning and memory in vertebrates. * APOPTOSIS The process of programmed cell death, characterized by distinctive morphological changes in the nucleus and cytoplasm, chromatin


cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA. * LIGHT/DARK EXPLORATION TEST This test depends on the natural tendency of rodents to explore the


environment in the absence of a threat and to retreat to an enclosed area when fearful. The animals are placed in an apparatus that has a dark and an illuminated compartment. Reduced


exploration of the bright compartment and a reduced number of transitions between compartments are commonly interpreted as measures of anxiety. * FURIN An endopeptidase with specificity for


the consensus sequence Arg-X-Lys/Arg-Arg. * KINDLING An experimental model of epilepsy in which an increased susceptibility to seizures arises after daily focal stimulation of specific brain


areas (for example, the amygdala) — stimulation that does not reach the threshold to elicit a seizure by itself. * CONDITIONAL MUTATION A mutation that can be selectively targeted to


specific organs (or cell types within an organ) or induced at a specific developmental stage. * POLYMORPHISM The simultaneous existence in the same population of two or more genotypes in


frequencies that cannot be explained by recurrent mutations. * LEARNED HELPLESSNESS A commonly used model of depression in which animals are exposed to inescapable shock and subsequently


tested for deficits in learning a shock-avoidance task. Learned helplessness is a rare example in which, rather than working from the psychiatric disorder to the model, the behavioural


effect was originally discovered in experimental animals (dogs) and later invoked to explain depression. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE


Chao, M. Neurotrophins and their receptors: A convergence point for many signalling pathways. _Nat Rev Neurosci_ 4, 299–309 (2003). https://doi.org/10.1038/nrn1078 Download citation * Issue


Date: 01 April 2003 * DOI: https://doi.org/10.1038/nrn1078 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative