Immune mechanisms in medium and large-vessel vasculitis
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN

Play all audios:

KEY POINTS * Giant cell arteritis (GCA), the most frequent form of large-vessel vasculitis, occurs in a strictly defined tissue context and requires corruption of the immune-privileged
tissue niche of the arterial wall * Receptors and ligands from the Notch family facilitate information exchange between vascular stromal cells and immune cells, and are critically involved
in the development of vasculitis * The therapeutic potential of targeting the stromal compartment in vasculitis is currently unexplored * Granulomatous inflammation in GCA is characterized
by a cytokine cascade, in which the initiating signals are poorly defined, but the many effectors match those encountered in protective immune responses * A cytokine cluster involving the
IL-6–IL-17 axis is highly active in early and untreated disease, is rapidly suppressed by corticosteroids and is redundant for vasculitis * A cytokine cluster centring on the IL-12–IFN-γ
axis is more resistant to immunosuppression and reveals pathogenic similarities between allograft arteriosclerosis and GCA ABSTRACT Vasculitis of the medium and large arteries, most often
presenting as giant cell arteritis (GCA), is an infrequent, but potentially fatal, type of immune-mediated vascular disease. The site of the aberrant immune reaction, the mural layers of the
artery, is strictly defined by vascular dendritic cells, endothelial cells, vascular smooth muscle cells and fibroblasts, which engage in an interaction with T cells and macrophages to,
ultimately, cause luminal stenosis or aneurysmal wall damage of the vessel. A multitude of effector cytokines, all known as critical mediators in host-protective immunity, have been
identified in vasculitic lesions. Two dominant cytokine clusters—the IL-6–IL-17 axis and the IL-12–IFN-γ axis—have been linked to disease activity. These two clusters seem to serve different
roles in the vasculitic process. The IL-6–IL-17 cluster is highly responsive to standard corticosteroid therapy, whereas the IL-12–IFN-γ cluster is resistant to steroid-mediated
immunosuppression. The information exchange between vascular and immune cells and stabilization of the vasculitic process involves members of the Notch receptor and ligand family. Focusing
on elements in the tissue context of GCA, instead of broadly suppressing host immunity, might enable a more tailored therapeutic approach that avoids unwanted adverse effects of aggressive
immunosuppression. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution
Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full
article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *
Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS LARGE-VESSEL VASCULITIS Article 06 January 2022 VASCULAR DAMAGE IN SYSTEMIC LUPUS ERYTHEMATOSUS Article 03 January 2024
ARTERIAL AND VENOUS THROMBOSIS IN SYSTEMIC AND MONOGENIC VASCULITIS Article 06 May 2025 REFERENCES * Gabriel, S. E. & Michaud, K. Epidemiological studies in incidence, prevalence,
mortality, and comorbidity of the rheumatic diseases. _Arthritis Res. Ther._ 11, 229 (2009). Article PubMed PubMed Central Google Scholar * Phillip, R. & Luqmani, R. Mortality in
systemic vasculitis: a systematic review. _Clin. Exp. Rheumatol._ 26, S94–S104 (2008). CAS PubMed Google Scholar * Richards, B. L., March, L. & Gabriel, S. E. Epidemiology of
large-vessel vasculidities. _Best Pract. Res. Clin. Rheumatol._ 24, 871–883 (2010). Article PubMed Google Scholar * Weiss, P. F. Pediatric vasculitis. _Pediatr. Clin. North Am._ 59,
407–423 (2012). Article PubMed PubMed Central Google Scholar * Legein, B., Temmerman, L., Biessen, E. A. & Lutgens, E. Inflammation and immune system interactions in atherosclerosis.
_Cell. Mol. Life Sci._ 70, 3847–3869 (2013). Article CAS PubMed Google Scholar * Libby, P. Inflammation in atherosclerosis. _Arterioscler. Thromb. Vasc. Biol._ 32, 2045–2051 (2012).
Article CAS PubMed PubMed Central Google Scholar * Mackie, S. L., Hensor, E. M., Morgan, A. W. & Pease, C. T. Should I send my patient with previous giant cell arteritis for imaging
of the thoracic aorta? A systematic literature review and meta-analysis. _Ann. Rheum. Dis._ http://dx.doi.org/10.1136/annrheumdis-2012-202145. * Kermani, T. A. _ et al_. Large-vessel
involvement in giant cell arteritis: a population-based cohort study of the incidence-trends and prognosis. _Ann. Rheum. Dis._ http://dx.doi.org/10.1136/annrheumdis-2012-202408. * Luqmani,
R. Large vessel vasculitides: update for the cardiologist. _Curr. Opin. Cardiol._ 27, 578–584 (2012). Article PubMed Google Scholar * Weyand, C. M. & Goronzy, J. J. Medium- and
large-vessel vasculitis. _N. Engl. J. Med._ 349, 160–169 (2003). Article CAS PubMed Google Scholar * Jennette, J. C. _ et al_. 2012 revised International Chapel Hill Consensus Conference
Nomenclature of Vasculitides. _Arthritis Rheum._ 65, 1–11 (2013). Article CAS PubMed Google Scholar * Shiran, H., Haddad, F., Miller, D. C. & Liang, D. Comparison of aortic root
diameter to left ventricular outflow diameter versus body surface area in patients with marfan syndrome. _Am. J. Cardiol._ 110, 1518–1522 (2012). Article PubMed Google Scholar * Roman, M.
J., Devereux, R. B., Kramer-Fox, R. & O'Loughlin, J. Two-dimensional echocardiographic aortic root dimensions in normal children and adults. _Am. J. Cardiol._ 64, 507–512 (1989).
Article CAS PubMed Google Scholar * Heistad, D. D. & Marcus, M. L. Role of vasa vasorum in nourishment of the aorta. _Blood Vessels_ 16, 225–238 (1979). CAS PubMed Google Scholar
* Kassab, G. S. Biomechanics of the cardiovascular system: the aorta as an illustratory example. _J. R. Soc. Interface_ 3, 719–740 (2006). Article PubMed PubMed Central Google Scholar *
Seok, J. _ et al_. Genomic responses in mouse models poorly mimic human inflammatory diseases. _Proc. Natl Acad. Sci. USA_ 110, 3507–3512 (2013). Article PubMed Google Scholar * Lacolley,
P., Regnault, V., Nicoletti, A., Li, Z. & Michel, J. B. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. _Cardiovasc. Res._ 95, 194–204
(2012). Article CAS PubMed Google Scholar * McGettrick, H. M., Butler, L. M., Buckley, C. D., Rainger, G. E. & Nash, G. B. Tissue stroma as a regulator of leukocyte recruitment in
inflammation. _J. Leukoc. Biol._ 91, 385–400 (2012). Article PubMed Google Scholar * Weyand, C. M. _ et al_. Vascular dendritic cells in giant cell arteritis. _Ann. NY Acad. Sci._ 1062,
195–208 (2005). Article PubMed Google Scholar * Pryshchep, O., Ma-Krupa, W., Younge, B. R., Goronzy, J. J. & Weyand, C. M. Vessel-specific Toll-like receptor profiles in human medium
and large arteries. _Circulation_ 118, 1276–1284 (2008). Article CAS PubMed PubMed Central Google Scholar * Stenmark, K. R. _ et al_. The adventitia: essential regulator of vascular
wall structure and function. _Annu. Rev. Physiol._ 75, 23–47 (2013). Article CAS PubMed Google Scholar * Ma-Krupa, W. _ et al_. Activation of arterial wall dendritic cells and breakdown
of self-tolerance in giant cell arteritis. _J. Exp. Med._ 199, 173–183 (2004). Article CAS PubMed PubMed Central Google Scholar * Krupa, W. M. _ et al_. Trapping of misdirected
dendritic cells in the granulomatous lesions of giant cell arteritis. _Am. J. Pathol._ 161, 1815–1823 (2002). Article CAS PubMed PubMed Central Google Scholar * Wagner, A. D.,
Bjornsson, J., Bartley, G. B., Goronzy, J. J. & Weyand, C. M. Interferon-γ-producing T cells in giant cell vasculitis represent a minority of tissue-infiltrating cells and are located
distant from the site of pathology. _Am. J. Pathol._ 148, 1925–1933 (1996). CAS PubMed PubMed Central Google Scholar * Martinez-Taboada, V., Brack, A., Hunder, G. G., Goronzy, J. J.
& Weyand, C. M. The inflammatory infiltrate in giant cell arteritis selects against B lymphocytes. _J. Rheumatol._ 23, 1011–1014 (1996). CAS PubMed Google Scholar * Ma-Krupa, W.,
Kwan, M., Goronzy, J. J. & Weyand, C. M. Toll-like receptors in giant cell arteritis. _Clin. Immunol._ 115, 38–46 (2005). Article CAS PubMed Google Scholar * Deng, J. _ et al_.
Toll-like receptors 4 and 5 induce distinct types of vasculitis. _Circ. Res._ 104, 488–495 (2009). Article CAS PubMed PubMed Central Google Scholar * Koenig, C. L. _ et al_.
Identification of a _Burkholderia_-like strain from temporal arteries of subjects with giant cell arteritis. _Arthritis Rheum._ 64, S373 (2012). Google Scholar * Rodriguez-Pla, A. &
Stone, J. H. Vasculitis and systemic infections. _Curr. Opin. Rheumatol._ 18, 39–47 (2006). Article PubMed Google Scholar * Koren, O. _ et al_. Human oral, gut, and plaque microbiota in
patients with atherosclerosis. _Proc. Natl Acad. Sci. USA_ 108 (Suppl. 1), 4592–4598 (2011). Article PubMed Google Scholar * Dejaco, C. _ et al_. NKG2D stimulated T-cell autoreactivity in
giant cell arteritis and polymyalgia rheumatica. _Ann. Rheum. Dis._ 72, 1852–1859 (2013). Article CAS PubMed Google Scholar * Dasgupta, B. & Panayi, G. S. Interleukin-6 in serum of
patients with polymyalgia rheumatica and giant cell arteritis. _Br. J. Rheumatol._ 29, 456–458 (1990). Article CAS PubMed Google Scholar * Roche, N. E. _ et al_. Correlation of
interleukin-6 production and disease activity in polymyalgia rheumatica and giant cell arteritis. _Arthritis Rheum._ 36, 1286–1294 (1993). Article CAS PubMed Google Scholar *
Hernandez-Rodriguez, J. _ et al_. Tissue production of pro-inflammatory cytokines (IL-1β, TNF-α and IL-6) correlates with the intensity of the systemic inflammatory response and with
corticosteroid requirements in giant-cell arteritis. _Rheumatology (Oxford)_ 43, 294–301 (2004). Article CAS Google Scholar * Weyand, C. M. & Goronzy, J. J. Giant-cell arteritis and
polymyalgia rheumatica. _Ann. Intern. Med._ 139, 505–515 (2003). Article PubMed Google Scholar * Bode, J. G., Albrecht, U., Haussinger, D., Heinrich, P. C. & Schaper, F. Hepatic acute
phase proteins--regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling. _Eur. J. Cell Biol._ 91, 496–505 (2012). Article CAS PubMed
Google Scholar * Weyand, C. M., Fulbright, J. W., Hunder, G. G., Evans, J. M. & Goronzy, J. J. Treatment of giant cell arteritis: interleukin-6 as a biologic marker of disease activity.
_Arthritis Rheum._ 43, 1041–1048 (2000). Article CAS PubMed Google Scholar * Kishimoto, T. IL-6: from its discovery to clinical applications. _Int. Immunol._ 22, 347–352 (2010). Article
CAS PubMed Google Scholar * Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M. & Murphy, K. M. Th17: an effector CD4 T cell lineage with regulatory T cell ties.
_Immunity_ 24, 677–688 (2006). Article CAS PubMed Google Scholar * Bettelli, E., Korn, T. & Kuchroo, V. K. Th17: the third member of the effector T cell trilogy. _Curr. Opin.
Immunol._ 19, 652–657 (2007). Article CAS PubMed PubMed Central Google Scholar * Chen, Z., Laurence, A. & O'Shea, J. J. Signal transduction pathways and transcriptional
regulation in the control of Th17 differentiation. _Semin. Immunol._ 19, 400–408 (2007). Article CAS PubMed PubMed Central Google Scholar * Harrington, L. E., Mangan, P. R. &
Weaver, C. T. Expanding the effector CD4 T-cell repertoire: the Th17 lineage. _Curr. Opin. Immunol._ 18, 349–356 (2006). Article CAS PubMed Google Scholar * Maddur, M. S., Miossec, P.,
Kaveri, S. V. & Bayry, J. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. _Am. J. Pathol._ 181, 8–18 (2012). Article CAS PubMed
Google Scholar * Lee, W. W. _ et al_. Regulating human Th17 cells via differential expression of IL-1 receptor. _Blood_ 115, 530–540 (2010). Article CAS PubMed PubMed Central Google
Scholar * Torchinsky, M. B. & Blander, J. M. T helper 17 cells: discovery, function, and physiological trigger. _Cell. Mol. Life Sci._ 67, 1407–1421 (2010). Article CAS PubMed Google
Scholar * Donnelly, R. P. _ et al_. Interleukin-26: an IL-10-related cytokine produced by Th17 cells. _Cytokine Growth Factor Rev._ 21, 393–401 (2010). Article CAS PubMed PubMed Central
Google Scholar * Rutz, S., Eidenschenk, C. & Ouyang, W. IL-22, not simply a Th17 cytokine. _Immunol. Rev._ 252, 116–132 (2013). Article CAS PubMed Google Scholar * Sutherland, A.
P. _ et al_. IL-21 promotes CD8+ CTL activity via the transcription factor T-bet. _J. Immunol._ 190, 3977–3984 (2013). Article CAS PubMed Google Scholar * Camporeale, A. & Poli, V.
IL-6, IL-17 and STAT3: a holy trinity in auto-immunity? _Front. Biosci._ 17, 2306–2326 (2012). Article CAS Google Scholar * Schutyser, E., Struyf, S. & Van Damme, J. The CC chemokine
CCL20 and its receptor CCR6. _Cytokine Growth Factor Rev._ 14, 409–426 (2003). Article CAS PubMed Google Scholar * Deng, J., Younge, B. R., Olshen, R. A., Goronzy, J. J. & Weyand, C.
M. Th17 and Th1 T-cell responses in giant cell arteritis. _Circulation_ 121, 906–915 (2010). Article CAS PubMed PubMed Central Google Scholar * Samson, M. _ et al_. Th1 and Th17
lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. _Arthritis Rheum._ 64, 3788–3798 (2012). Article CAS PubMed Google Scholar *
Terrier, B. _ et al_. Interleukin-21 modulates Th1 and Th17 responses in giant cell arteritis. _Arthritis Rheum._ 64, 2001–2011 (2012). Article CAS PubMed Google Scholar * Wagner, A. D.,
Goronzy, J. J. & Weyand, C. M. Functional profile of tissue-infiltrating and circulating CD68+ cells in giant cell arteritis. Evidence for two components of the disease. _J. Clin.
Invest._ 94, 1134–1140 (1994). Article CAS PubMed PubMed Central Google Scholar * Weyand, C. M., Wagner, A. D., Bjornsson, J. & Goronzy, J. J. Correlation of the topographical
arrangement and the functional pattern of tissue-infiltrating macrophages in giant cell arteritis. _J. Clin. Invest._ 98, 1642–1649 (1996). Article PubMed PubMed Central Google Scholar *
Kimura, A. & Kishimoto, T. IL-6: regulator of Treg/Th17 balance. _Eur. J. Immunol._ 40, 1830–1835 (2010). Article CAS PubMed Google Scholar * Barbi, J., Pardoll, D. & Pan, F.
Metabolic control of the Treg/Th17 axis. _Immunol. Rev._ 252, 52–77 (2013). Article CAS PubMed PubMed Central Google Scholar * Espigol-Frigole, G. _ et al_. Increased IL-17A expression
in temporal artery lesions is a predictor of sustained response to glucocorticoid treatment in patients with giant-cell arteritis. _Ann. Rheum. Dis._ 72, 1481–1487 (2013). Article CAS
PubMed Google Scholar * Fogal, B. _ et al_. Neutralizing IL-6 reduces human arterial allograft rejection by allowing emergence of CD161+ CD4+ regulatory T cells. _J. Immunol._ 187,
6268–6280 (2011). Article CAS PubMed PubMed Central Google Scholar * Issa, F., Chandrasekharan, D. & Wood, K. J. Regulatory T cells as modulators of chronic allograft dysfunction.
_Curr. Opin. Immunol._ 23, 648–654 (2011). Article CAS PubMed Google Scholar * Mohan, S. V., Liao, Y. J., Kim, J. W., Goronzy, J. J. & Weyand, C. M. Giant cell arteritis: immune and
vascular aging as disease risk factors. _Arthritis Res. Ther._ 13, 231 (2011). Article CAS PubMed PubMed Central Google Scholar * Weyand, C. M., Younge, B. R. & Goronzy, J. J. IFN-γ
and IL-17: the two faces of T-cell pathology in giant cell arteritis. _Curr. Opin. Rheumatol._ 23, 43–49 (2011). Article CAS PubMed PubMed Central Google Scholar * Loock, J. _ et al_.
Treatment of refractory giant cell arteritis with cyclophosphamide:a retrospective analysis of 35 patients from three centres. _Clin. Exp. Rheumatol._ 30, S70–S76 (2012). PubMed Google
Scholar * Unizony, S. _ et al_. Tocilizumab for the treatment of large-vessel vasculitis (giant cell arteritis, Takayasu arteritis) and polymyalgia rheumatica. _Arthritis Care Res.
(Hoboken)_ 64, 1720–1729 (2012). Article CAS PubMed Google Scholar * Xenitidis, T., Horger, M., Zeh, G., Kanz, L. & Henes, J. C. Sustained inflammation of the aortic wall despite
tocilizumab treatment in two cases of Takayasu arteritis. _Rheumatology (Oxford)_ 52, 1729–1731 (2013). Article CAS Google Scholar * Evans, J. M., O'Fallon, W. M. & Hunder, G. G.
Increased incidence of aortic aneurysm and dissection in giant cell (temporal) arteritis. A population-based study. _Ann. Intern. Med._ 122, 502–507 (1995). Article CAS PubMed Google
Scholar * Weyand, C. M., Liao, Y. J. & Goronzy, J. J. The immunopathology of giant cell arteritis: diagnostic and therapeutic implications. _J. Neuroophthalmol._ 32, 259–265 (2012).
Article PubMed PubMed Central Google Scholar * Brack, A. _ et al_. Glucocorticoid-mediated repression of cytokine gene transcription in human arteritis-SCID chimeras. _J. Clin. Invest._
99, 2842–2850 (1997). Article CAS PubMed PubMed Central Google Scholar * Pober, J. S. & Tellides, G. Participation of blood vessel cells in human adaptive immune responses. _Trends
Immunol._ 33, 49–57 (2012). Article CAS PubMed Google Scholar * Min, W. & Pober, J. S. AIP1 in graft arteriosclerosis. _Trends Cardiovasc. Med._ 21, 229–233 (2011). Article CAS
PubMed PubMed Central Google Scholar * Choi, J., Enis, D. R., Koh, K. P., Shiao, S. L. & Pober, J. S. T lymphocyte-endothelial cell interactions. _Annu. Rev. Immunol._ 22, 683–709
(2004). Article CAS PubMed Google Scholar * Tellides, G. & Pober, J. S. Interferon-gamma axis in graft arteriosclerosis. _Circ. Res._ 100, 622–632 (2007). Article CAS PubMed
Google Scholar * MacMicking, J. D. Interferon-inducible effector mechanisms in cell-autonomous immunity. _Nat. Rev. Immunol._ 12, 367–382 (2012). Article CAS PubMed PubMed Central
Google Scholar * Zhang, S. Y. _ et al_. Inborn errors of interferon (IFN)-mediated immunity in humans: insights into the respective roles of IFN-α/β, IFN-γ, and IFN-λ in host defense.
_Immunol. Rev._ 226, 29–40 (2008). Article CAS PubMed Google Scholar * van Boxel-Dezaire, A. H. & Stark, G. R. Cell type-specific signaling in response to interferon-γ. _Curr. Top.
Microbiol. Immunol._ 316, 119–154 (2007). CAS PubMed Google Scholar * Lee, Y. K., Mukasa, R., Hatton, R. D. & Weaver, C. T. Developmental plasticity of Th17 and Treg cells. _Curr.
Opin. Immunol._ 21, 274–280 (2009). Article CAS PubMed Google Scholar * Yu, L. _ et al_. AIP1 prevents graft arteriosclerosis by inhibiting interferon-γ-dependent smooth muscle cell
proliferation and intimal expansion. _Circ. Res._ 109, 418–427 (2011). Article CAS PubMed PubMed Central Google Scholar * Kaiser, M., Weyand, C. M., Bjornsson, J. & Goronzy, J. J.
Platelet-derived growth factor, intimal hyperplasia, and ischemic complications in giant cell arteritis. _Arthritis Rheum._ 41, 623–633 (1998). Article CAS PubMed Google Scholar *
Kaiser, M., Younge, B., Bjornsson, J., Goronzy, J. J. & Weyand, C. M. Formation of new vasa vasorum in vasculitis. Production of angiogenic cytokines by multinucleated giant cells. _Am.
J. Pathol._ 155, 765–774 (1999). Article CAS PubMed PubMed Central Google Scholar * Ahmad, U. _ et al_. IFN-gamma primes intact human coronary arteries and cultured coronary smooth
muscle cells to double-stranded RNA- and self-RNA-induced inflammatory responses by upregulating TLR3 and melanoma differentiation-associated gene 5. _J. Immunol._ 185, 1283–1294 (2010).
Article CAS PubMed PubMed Central Google Scholar * Eid, R. E. _ et al_. Interleukin-17 and interferon-γ are produced concomitantly by human coronary artery-infiltrating T cells and act
synergistically on vascular smooth muscle cells. _Circulation_ 119, 1424–1432 (2009). Article CAS PubMed PubMed Central Google Scholar * Petursdottir, V., Nordborg, E. & Nordborg,
C. Atrophy of the aortic media in giant cell arteritis. _APMIS_ 104, 191–198 (1996). Article CAS PubMed Google Scholar * Bai, Y. _ et al_. Interferon-gamma induces X-linked inhibitor of
apoptosis-associated factor-1 and Noxa expression and potentiates human vascular smooth muscle cell apoptosis by STAT3 activation. _J. Biol. Chem._ 283, 6832–6842 (2008). Article CAS
PubMed Google Scholar * Lacotte, S., Brun, S., Muller, S. & Dumortier, H. CXCR3, inflammation, and autoimmune diseases. _Ann. NY Acad. Sci._ 1173, 310–317 (2009). Article CAS PubMed
Google Scholar * Ciccia, F. _ et al_. IL-33 is overexpressed in the inflamed arteries of patients with giant cell arteritis. _Ann. Rheum. Dis._ 72, 258–264 (2013). Article CAS PubMed
Google Scholar * Ciccia, F. _ et al_. Expression of interleukin-32 in the inflamed arteries of patients with giant cell arteritis. _Arthritis Rheum._ 63, 2097–2104 (2011). Article CAS
PubMed Google Scholar * Nizzoli, G. _ et al_. Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses. _Blood_ 122, 932–942 (2013). Article
CAS PubMed Google Scholar * Makkuni, D. _ et al_. Is intimal hyperplasia a marker of neuro-ophthalmic complications of giant cell arteritis? _Rheumatology (Oxford)_ 47, 488–490 (2008).
Article CAS Google Scholar * Salvarani, C. _ et al_. Risk factors for visual loss in an Italian population-based cohort of patients with giant cell arteritis. _Arthritis Rheum._ 53,
293–297 (2005). Article PubMed Google Scholar * Gonzalez-Gay, M. A. _ et al_. Visual manifestations of giant cell arteritis. Trends and clinical spectrum in 161 patients. _Medicine
(Baltimore)_ 79, 283–292 (2000). Article CAS Google Scholar * Singh, A. G. _ et al_. Visual manifestations in giant cell arteritis: trend over five decades. _Arthritis Rheum._ 64, S993
(2012). Article CAS Google Scholar * Khokha, R., Murthy, A. & Weiss, A. Metalloproteinases and their natural inhibitors in inflammation and immunity. _Nat. Rev. Immunol._ 13, 649–665
(2013). Article CAS PubMed Google Scholar * Enzerink, A. & Vaheri, A. Fibroblast activation in vascular inflammation. _J. Thromb. Haemost._ 9, 619–626 (2011). Article CAS PubMed
Google Scholar * O'Shea, J. J., Ma, A. & Lipsky, P. Cytokines and autoimmunity. _Nat. Rev. Immunol._ 2, 37–45 (2002). Article CAS PubMed Google Scholar * Hoffman, G. S. _ et
al_. Infliximab for maintenance of glucocorticosteroid-induced remission of giant cell arteritis: a randomized trial. _Ann. Intern. Med._ 146, 621–630 (2007). Article PubMed Google Scholar
* Kotter, I., Henes, J. C., Wagner, A. D., Loock, J. & Gross, W. L. Does glucocorticosteroid-resistant large-vessel vasculitis (giant cell arteritis and Takayasu arteritis) exist and
how can remission be achieved? A critical review of the literature. _Clin. Exp. Rheumatol._ 30, S114–129 (2012). PubMed Google Scholar * Adizie, T., Christidis, D., Dharmapaliah, C., Borg,
F. & Dasgupta, B. Efficacy and tolerability of leflunomide in difficult-to-treat polymyalgia rheumatica and giant cell arteritis: a case series. _Int. J. Clin. Pract._ 66, 906–909
(2012). Article CAS PubMed Google Scholar * Lie, J. T. Illustrated histopathologic classification criteria for selected vasculitis syndromes. American College of Rheumatology
Subcommittee on Classification of Vasculitis. Arthritis _Rheum._ 33, 1074–1087 (1990). CAS Google Scholar * Klein, R. G., Hunder, G. G., Stanson, A. W. & Sheps, S. G. Large artery
involvement in giant cell (temporal) arteritis. _Ann. Intern. Med._ 83, 806–812 (1975). Article CAS PubMed Google Scholar * Han, J. W. _ et al_. Vessel wall-embedded dendritic cells
induce T-cell autoreactivity and initiate vascular inflammation. _Circ. Res._ 102, 546–553 (2008). Article CAS PubMed Google Scholar * Agrawal, A., Sridharan, A., Prakash, S. &
Agrawal, H. Dendritic cells and aging: consequences for autoimmunity. _Expert Rev. Clin. Immunol._ 8, 73–80 (2012). Article CAS PubMed PubMed Central Google Scholar * Shaw, A. C. _ et
al_. Dysregulation of human Toll-like receptor function in aging. _Ageing Res. Rev._ 10, 346–353 (2011). Article CAS PubMed Google Scholar * Shaw, A. C., Joshi, S., Greenwood, H., Panda,
A. & Lord, J. M. Aging of the innate immune system. _Curr. Opin. Immunol._ 22, 507–513 (2010). Article CAS PubMed PubMed Central Google Scholar * Barone, F., Nayar, S. &
Buckley, C. D. The role of non-hematopoietic stromal cells in the persistence of inflammation. _Front. Immunol._ 3, 416 (2012). PubMed Google Scholar * Roozendaal, R. & Mebius, R. E.
Stromal cell-immune cell interactions. _Annu. Rev. Immunol._ 29, 23–43 (2011). Article CAS PubMed Google Scholar * Piggott, K. _ et al_. Blocking the NOTCH pathway inhibits vascular
inflammation in large-vessel vasculitis. _Circulation_ 123, 309–318 (2011). Article CAS PubMed PubMed Central Google Scholar * Bray, S. J. Notch signalling: a simple pathway becomes
complex. _Nat. Rev. Mol. Cell Biol._ 7, 678–689 (2006). Article CAS PubMed Google Scholar * Tzoneva, G. & Ferrando, A. A. Recent advances on NOTCH signaling in T-ALL. _Curr. Top.
Microbiol. Immunol._ 360, 163–182 (2012). CAS PubMed Google Scholar * Boucher, J., Gridley, T. & Liaw, L. Molecular pathways of notch signaling in vascular smooth muscle cells.
_Front. Physiol._ 3, 81 (2012). Article CAS PubMed PubMed Central Google Scholar * Yang, K. & Proweller, A. Vascular smooth muscle Notch signals regulate endothelial cell
sensitivity to angiogenic stimulation. _J. Biol. Chem._ 286, 13741–13753 (2011). Article CAS PubMed PubMed Central Google Scholar * Koyanagi, A., Sekine, C. & Yagita, H. Expression
of Notch receptors and ligands on immature and mature T cells. _Biochem. Biophys. Res. Commun._ 418, 799–805 (2012). Article CAS PubMed Google Scholar * Van de Walle, I. _ et al_.
Specific Notch receptor-ligand interactions control human TCR-αβ/γδ development by inducing differential Notch signal strength. _J. Exp. Med._ 210, 683–697 (2013). Article CAS PubMed
PubMed Central Google Scholar * Ilarregui, J. M. _ et al_. Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving
interleukin 27 and interleukin 10. _Nat. Immunol._ 10, 981–991 (2009). Article CAS PubMed Google Scholar * Svensson, M., Maroof, A., Ato, M. & Kaye, P. M. Stromal cells direct local
differentiation of regulatory dendritic cells. _Immunity._ 21, 805–816 (2004). Article CAS PubMed Google Scholar * Huang, Y. _ et al_. Kidney-derived stromal cells modulate dendritic and
T cell responses. _J. Am. Soc. Nephrol._ 20, 831–841 (2009). Article CAS PubMed PubMed Central Google Scholar * Li, Q., Guo, Z., Xu, X., Xia, S. & Cao, X. Pulmonary stromal cells
induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation. _Eur. J. Immunol._ 38, 2751–2761 (2008). Article CAS PubMed Google Scholar * Zhang, M. _ et al_.
Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. _Nat. Immunol._ 5, 1124–1133 (2004). Article CAS PubMed Google Scholar * Xiao, J. _ et al_.
Syndecan-1 displays a protective role in aortic aneurysm formation by modulating T cell-mediated responses. _Arterioscler. Thromb. Vasc. Biol._ 32, 386–396 (2012). Article CAS PubMed
Google Scholar * Pober, J. S. & Sessa, W. C. Evolving functions of endothelial cells in inflammation. _Nat. Rev. Immunol._ 7, 803–815 (2007). Article CAS PubMed Google Scholar *
Régent, A. _ et al_. Identification of target antigens of anti-endothelial cell and anti-vascular smooth muscle cell antibodies in patients with giant cell arteritis: a proteomic approach.
_Arthritis Res. Ther._ 13, R107 (2011). Article PubMed PubMed Central Google Scholar * Dimitrijevic, I., Andersson, C., Rissler, P. & Edvinsson, L. Increased tissue endothelin-1 and
endothelin-B receptor expression in temporal arteries from patients with giant cell arteritis. _Ophthalmology_ 117, 628–636 (2010). Article PubMed Google Scholar Download references
ACKNOWLEDGEMENTS The authors would like to acknowledge support from grants from the NIH (R01 EY011916, P01 HL058000, U19 AI057266 and U19 AI090019) and the Govenar Discovery Fund (C. M.
Weyand). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, CCSR Building Room 2225, Mail
Code 5166, 269 Campus Drive West, Stanford, 94305-5166, CA, USA Cornelia M. Weyand & Jörg J. Goronzy Authors * Cornelia M. Weyand View author publications You can also search for this
author inPubMed Google Scholar * Jörg J. Goronzy View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS Both authors made equal contributions to
all aspects of this manuscript. CORRESPONDING AUTHOR Correspondence to Cornelia M. Weyand. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests.
POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR FIG. 4 POWERPOINT SLIDE FOR TABLE 1 RIGHTS AND PERMISSIONS Reprints
and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Weyand, C., Goronzy, J. Immune mechanisms in medium and large-vessel vasculitis. _Nat Rev Rheumatol_ 9, 731–740 (2013).
https://doi.org/10.1038/nrrheum.2013.161 Download citation * Published: 05 November 2013 * Issue Date: December 2013 * DOI: https://doi.org/10.1038/nrrheum.2013.161 SHARE THIS ARTICLE Anyone
you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by
the Springer Nature SharedIt content-sharing initiative