Immune mechanisms in medium and large-vessel vasculitis


Immune mechanisms in medium and large-vessel vasculitis

Play all audios:


KEY POINTS * Giant cell arteritis (GCA), the most frequent form of large-vessel vasculitis, occurs in a strictly defined tissue context and requires corruption of the immune-privileged


tissue niche of the arterial wall * Receptors and ligands from the Notch family facilitate information exchange between vascular stromal cells and immune cells, and are critically involved


in the development of vasculitis * The therapeutic potential of targeting the stromal compartment in vasculitis is currently unexplored * Granulomatous inflammation in GCA is characterized


by a cytokine cascade, in which the initiating signals are poorly defined, but the many effectors match those encountered in protective immune responses * A cytokine cluster involving the


IL-6–IL-17 axis is highly active in early and untreated disease, is rapidly suppressed by corticosteroids and is redundant for vasculitis * A cytokine cluster centring on the IL-12–IFN-γ


axis is more resistant to immunosuppression and reveals pathogenic similarities between allograft arteriosclerosis and GCA ABSTRACT Vasculitis of the medium and large arteries, most often


presenting as giant cell arteritis (GCA), is an infrequent, but potentially fatal, type of immune-mediated vascular disease. The site of the aberrant immune reaction, the mural layers of the


artery, is strictly defined by vascular dendritic cells, endothelial cells, vascular smooth muscle cells and fibroblasts, which engage in an interaction with T cells and macrophages to,


ultimately, cause luminal stenosis or aneurysmal wall damage of the vessel. A multitude of effector cytokines, all known as critical mediators in host-protective immunity, have been


identified in vasculitic lesions. Two dominant cytokine clusters—the IL-6–IL-17 axis and the IL-12–IFN-γ axis—have been linked to disease activity. These two clusters seem to serve different


roles in the vasculitic process. The IL-6–IL-17 cluster is highly responsive to standard corticosteroid therapy, whereas the IL-12–IFN-γ cluster is resistant to steroid-mediated


immunosuppression. The information exchange between vascular and immune cells and stabilization of the vasculitic process involves members of the Notch receptor and ligand family. Focusing


on elements in the tissue context of GCA, instead of broadly suppressing host immunity, might enable a more tailored therapeutic approach that avoids unwanted adverse effects of aggressive


immunosuppression. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution


Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full


article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs *


Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS LARGE-VESSEL VASCULITIS Article 06 January 2022 VASCULAR DAMAGE IN SYSTEMIC LUPUS ERYTHEMATOSUS Article 03 January 2024


ARTERIAL AND VENOUS THROMBOSIS IN SYSTEMIC AND MONOGENIC VASCULITIS Article 06 May 2025 REFERENCES * Gabriel, S. E. & Michaud, K. Epidemiological studies in incidence, prevalence,


mortality, and comorbidity of the rheumatic diseases. _Arthritis Res. Ther._ 11, 229 (2009). Article  PubMed  PubMed Central  Google Scholar  * Phillip, R. & Luqmani, R. Mortality in


systemic vasculitis: a systematic review. _Clin. Exp. Rheumatol._ 26, S94–S104 (2008). CAS  PubMed  Google Scholar  * Richards, B. L., March, L. & Gabriel, S. E. Epidemiology of


large-vessel vasculidities. _Best Pract. Res. Clin. Rheumatol._ 24, 871–883 (2010). Article  PubMed  Google Scholar  * Weiss, P. F. Pediatric vasculitis. _Pediatr. Clin. North Am._ 59,


407–423 (2012). Article  PubMed  PubMed Central  Google Scholar  * Legein, B., Temmerman, L., Biessen, E. A. & Lutgens, E. Inflammation and immune system interactions in atherosclerosis.


_Cell. Mol. Life Sci._ 70, 3847–3869 (2013). Article  CAS  PubMed  Google Scholar  * Libby, P. Inflammation in atherosclerosis. _Arterioscler. Thromb. Vasc. Biol._ 32, 2045–2051 (2012).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Mackie, S. L., Hensor, E. M., Morgan, A. W. & Pease, C. T. Should I send my patient with previous giant cell arteritis for imaging


of the thoracic aorta? A systematic literature review and meta-analysis. _Ann. Rheum. Dis._ http://dx.doi.org/10.1136/annrheumdis-2012-202145. * Kermani, T. A. _ et al_. Large-vessel


involvement in giant cell arteritis: a population-based cohort study of the incidence-trends and prognosis. _Ann. Rheum. Dis._ http://dx.doi.org/10.1136/annrheumdis-2012-202408. * Luqmani,


R. Large vessel vasculitides: update for the cardiologist. _Curr. Opin. Cardiol._ 27, 578–584 (2012). Article  PubMed  Google Scholar  * Weyand, C. M. & Goronzy, J. J. Medium- and


large-vessel vasculitis. _N. Engl. J. Med._ 349, 160–169 (2003). Article  CAS  PubMed  Google Scholar  * Jennette, J. C. _ et al_. 2012 revised International Chapel Hill Consensus Conference


Nomenclature of Vasculitides. _Arthritis Rheum._ 65, 1–11 (2013). Article  CAS  PubMed  Google Scholar  * Shiran, H., Haddad, F., Miller, D. C. & Liang, D. Comparison of aortic root


diameter to left ventricular outflow diameter versus body surface area in patients with marfan syndrome. _Am. J. Cardiol._ 110, 1518–1522 (2012). Article  PubMed  Google Scholar  * Roman, M.


J., Devereux, R. B., Kramer-Fox, R. & O'Loughlin, J. Two-dimensional echocardiographic aortic root dimensions in normal children and adults. _Am. J. Cardiol._ 64, 507–512 (1989).


Article  CAS  PubMed  Google Scholar  * Heistad, D. D. & Marcus, M. L. Role of vasa vasorum in nourishment of the aorta. _Blood Vessels_ 16, 225–238 (1979). CAS  PubMed  Google Scholar 


* Kassab, G. S. Biomechanics of the cardiovascular system: the aorta as an illustratory example. _J. R. Soc. Interface_ 3, 719–740 (2006). Article  PubMed  PubMed Central  Google Scholar  *


Seok, J. _ et al_. Genomic responses in mouse models poorly mimic human inflammatory diseases. _Proc. Natl Acad. Sci. USA_ 110, 3507–3512 (2013). Article  PubMed  Google Scholar  * Lacolley,


P., Regnault, V., Nicoletti, A., Li, Z. & Michel, J. B. The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. _Cardiovasc. Res._ 95, 194–204


(2012). Article  CAS  PubMed  Google Scholar  * McGettrick, H. M., Butler, L. M., Buckley, C. D., Rainger, G. E. & Nash, G. B. Tissue stroma as a regulator of leukocyte recruitment in


inflammation. _J. Leukoc. Biol._ 91, 385–400 (2012). Article  PubMed  Google Scholar  * Weyand, C. M. _ et al_. Vascular dendritic cells in giant cell arteritis. _Ann. NY Acad. Sci._ 1062,


195–208 (2005). Article  PubMed  Google Scholar  * Pryshchep, O., Ma-Krupa, W., Younge, B. R., Goronzy, J. J. & Weyand, C. M. Vessel-specific Toll-like receptor profiles in human medium


and large arteries. _Circulation_ 118, 1276–1284 (2008). Article  CAS  PubMed  PubMed Central  Google Scholar  * Stenmark, K. R. _ et al_. The adventitia: essential regulator of vascular


wall structure and function. _Annu. Rev. Physiol._ 75, 23–47 (2013). Article  CAS  PubMed  Google Scholar  * Ma-Krupa, W. _ et al_. Activation of arterial wall dendritic cells and breakdown


of self-tolerance in giant cell arteritis. _J. Exp. Med._ 199, 173–183 (2004). Article  CAS  PubMed  PubMed Central  Google Scholar  * Krupa, W. M. _ et al_. Trapping of misdirected


dendritic cells in the granulomatous lesions of giant cell arteritis. _Am. J. Pathol._ 161, 1815–1823 (2002). Article  CAS  PubMed  PubMed Central  Google Scholar  * Wagner, A. D.,


Bjornsson, J., Bartley, G. B., Goronzy, J. J. & Weyand, C. M. Interferon-γ-producing T cells in giant cell vasculitis represent a minority of tissue-infiltrating cells and are located


distant from the site of pathology. _Am. J. Pathol._ 148, 1925–1933 (1996). CAS  PubMed  PubMed Central  Google Scholar  * Martinez-Taboada, V., Brack, A., Hunder, G. G., Goronzy, J. J.


& Weyand, C. M. The inflammatory infiltrate in giant cell arteritis selects against B lymphocytes. _J. Rheumatol._ 23, 1011–1014 (1996). CAS  PubMed  Google Scholar  * Ma-Krupa, W.,


Kwan, M., Goronzy, J. J. & Weyand, C. M. Toll-like receptors in giant cell arteritis. _Clin. Immunol._ 115, 38–46 (2005). Article  CAS  PubMed  Google Scholar  * Deng, J. _ et al_.


Toll-like receptors 4 and 5 induce distinct types of vasculitis. _Circ. Res._ 104, 488–495 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Koenig, C. L. _ et al_.


Identification of a _Burkholderia_-like strain from temporal arteries of subjects with giant cell arteritis. _Arthritis Rheum._ 64, S373 (2012). Google Scholar  * Rodriguez-Pla, A. &


Stone, J. H. Vasculitis and systemic infections. _Curr. Opin. Rheumatol._ 18, 39–47 (2006). Article  PubMed  Google Scholar  * Koren, O. _ et al_. Human oral, gut, and plaque microbiota in


patients with atherosclerosis. _Proc. Natl Acad. Sci. USA_ 108 (Suppl. 1), 4592–4598 (2011). Article  PubMed  Google Scholar  * Dejaco, C. _ et al_. NKG2D stimulated T-cell autoreactivity in


giant cell arteritis and polymyalgia rheumatica. _Ann. Rheum. Dis._ 72, 1852–1859 (2013). Article  CAS  PubMed  Google Scholar  * Dasgupta, B. & Panayi, G. S. Interleukin-6 in serum of


patients with polymyalgia rheumatica and giant cell arteritis. _Br. J. Rheumatol._ 29, 456–458 (1990). Article  CAS  PubMed  Google Scholar  * Roche, N. E. _ et al_. Correlation of


interleukin-6 production and disease activity in polymyalgia rheumatica and giant cell arteritis. _Arthritis Rheum._ 36, 1286–1294 (1993). Article  CAS  PubMed  Google Scholar  *


Hernandez-Rodriguez, J. _ et al_. Tissue production of pro-inflammatory cytokines (IL-1β, TNF-α and IL-6) correlates with the intensity of the systemic inflammatory response and with


corticosteroid requirements in giant-cell arteritis. _Rheumatology (Oxford)_ 43, 294–301 (2004). Article  CAS  Google Scholar  * Weyand, C. M. & Goronzy, J. J. Giant-cell arteritis and


polymyalgia rheumatica. _Ann. Intern. Med._ 139, 505–515 (2003). Article  PubMed  Google Scholar  * Bode, J. G., Albrecht, U., Haussinger, D., Heinrich, P. C. & Schaper, F. Hepatic acute


phase proteins--regulation by IL-6- and IL-1-type cytokines involving STAT3 and its crosstalk with NF-κB-dependent signaling. _Eur. J. Cell Biol._ 91, 496–505 (2012). Article  CAS  PubMed 


Google Scholar  * Weyand, C. M., Fulbright, J. W., Hunder, G. G., Evans, J. M. & Goronzy, J. J. Treatment of giant cell arteritis: interleukin-6 as a biologic marker of disease activity.


_Arthritis Rheum._ 43, 1041–1048 (2000). Article  CAS  PubMed  Google Scholar  * Kishimoto, T. IL-6: from its discovery to clinical applications. _Int. Immunol._ 22, 347–352 (2010). Article


  CAS  PubMed  Google Scholar  * Weaver, C. T., Harrington, L. E., Mangan, P. R., Gavrieli, M. & Murphy, K. M. Th17: an effector CD4 T cell lineage with regulatory T cell ties.


_Immunity_ 24, 677–688 (2006). Article  CAS  PubMed  Google Scholar  * Bettelli, E., Korn, T. & Kuchroo, V. K. Th17: the third member of the effector T cell trilogy. _Curr. Opin.


Immunol._ 19, 652–657 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, Z., Laurence, A. & O'Shea, J. J. Signal transduction pathways and transcriptional


regulation in the control of Th17 differentiation. _Semin. Immunol._ 19, 400–408 (2007). Article  CAS  PubMed  PubMed Central  Google Scholar  * Harrington, L. E., Mangan, P. R. &


Weaver, C. T. Expanding the effector CD4 T-cell repertoire: the Th17 lineage. _Curr. Opin. Immunol._ 18, 349–356 (2006). Article  CAS  PubMed  Google Scholar  * Maddur, M. S., Miossec, P.,


Kaveri, S. V. & Bayry, J. Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. _Am. J. Pathol._ 181, 8–18 (2012). Article  CAS  PubMed 


Google Scholar  * Lee, W. W. _ et al_. Regulating human Th17 cells via differential expression of IL-1 receptor. _Blood_ 115, 530–540 (2010). Article  CAS  PubMed  PubMed Central  Google


Scholar  * Torchinsky, M. B. & Blander, J. M. T helper 17 cells: discovery, function, and physiological trigger. _Cell. Mol. Life Sci._ 67, 1407–1421 (2010). Article  CAS  PubMed  Google


Scholar  * Donnelly, R. P. _ et al_. Interleukin-26: an IL-10-related cytokine produced by Th17 cells. _Cytokine Growth Factor Rev._ 21, 393–401 (2010). Article  CAS  PubMed  PubMed Central


  Google Scholar  * Rutz, S., Eidenschenk, C. & Ouyang, W. IL-22, not simply a Th17 cytokine. _Immunol. Rev._ 252, 116–132 (2013). Article  CAS  PubMed  Google Scholar  * Sutherland, A.


P. _ et al_. IL-21 promotes CD8+ CTL activity via the transcription factor T-bet. _J. Immunol._ 190, 3977–3984 (2013). Article  CAS  PubMed  Google Scholar  * Camporeale, A. & Poli, V.


IL-6, IL-17 and STAT3: a holy trinity in auto-immunity? _Front. Biosci._ 17, 2306–2326 (2012). Article  CAS  Google Scholar  * Schutyser, E., Struyf, S. & Van Damme, J. The CC chemokine


CCL20 and its receptor CCR6. _Cytokine Growth Factor Rev._ 14, 409–426 (2003). Article  CAS  PubMed  Google Scholar  * Deng, J., Younge, B. R., Olshen, R. A., Goronzy, J. J. & Weyand, C.


M. Th17 and Th1 T-cell responses in giant cell arteritis. _Circulation_ 121, 906–915 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Samson, M. _ et al_. Th1 and Th17


lymphocytes expressing CD161 are implicated in giant cell arteritis and polymyalgia rheumatica pathogenesis. _Arthritis Rheum._ 64, 3788–3798 (2012). Article  CAS  PubMed  Google Scholar  *


Terrier, B. _ et al_. Interleukin-21 modulates Th1 and Th17 responses in giant cell arteritis. _Arthritis Rheum._ 64, 2001–2011 (2012). Article  CAS  PubMed  Google Scholar  * Wagner, A. D.,


Goronzy, J. J. & Weyand, C. M. Functional profile of tissue-infiltrating and circulating CD68+ cells in giant cell arteritis. Evidence for two components of the disease. _J. Clin.


Invest._ 94, 1134–1140 (1994). Article  CAS  PubMed  PubMed Central  Google Scholar  * Weyand, C. M., Wagner, A. D., Bjornsson, J. & Goronzy, J. J. Correlation of the topographical


arrangement and the functional pattern of tissue-infiltrating macrophages in giant cell arteritis. _J. Clin. Invest._ 98, 1642–1649 (1996). Article  PubMed  PubMed Central  Google Scholar  *


Kimura, A. & Kishimoto, T. IL-6: regulator of Treg/Th17 balance. _Eur. J. Immunol._ 40, 1830–1835 (2010). Article  CAS  PubMed  Google Scholar  * Barbi, J., Pardoll, D. & Pan, F.


Metabolic control of the Treg/Th17 axis. _Immunol. Rev._ 252, 52–77 (2013). Article  CAS  PubMed  PubMed Central  Google Scholar  * Espigol-Frigole, G. _ et al_. Increased IL-17A expression


in temporal artery lesions is a predictor of sustained response to glucocorticoid treatment in patients with giant-cell arteritis. _Ann. Rheum. Dis._ 72, 1481–1487 (2013). Article  CAS 


PubMed  Google Scholar  * Fogal, B. _ et al_. Neutralizing IL-6 reduces human arterial allograft rejection by allowing emergence of CD161+ CD4+ regulatory T cells. _J. Immunol._ 187,


6268–6280 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Issa, F., Chandrasekharan, D. & Wood, K. J. Regulatory T cells as modulators of chronic allograft dysfunction.


_Curr. Opin. Immunol._ 23, 648–654 (2011). Article  CAS  PubMed  Google Scholar  * Mohan, S. V., Liao, Y. J., Kim, J. W., Goronzy, J. J. & Weyand, C. M. Giant cell arteritis: immune and


vascular aging as disease risk factors. _Arthritis Res. Ther._ 13, 231 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Weyand, C. M., Younge, B. R. & Goronzy, J. J. IFN-γ


and IL-17: the two faces of T-cell pathology in giant cell arteritis. _Curr. Opin. Rheumatol._ 23, 43–49 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Loock, J. _ et al_.


Treatment of refractory giant cell arteritis with cyclophosphamide:a retrospective analysis of 35 patients from three centres. _Clin. Exp. Rheumatol._ 30, S70–S76 (2012). PubMed  Google


Scholar  * Unizony, S. _ et al_. Tocilizumab for the treatment of large-vessel vasculitis (giant cell arteritis, Takayasu arteritis) and polymyalgia rheumatica. _Arthritis Care Res.


(Hoboken)_ 64, 1720–1729 (2012). Article  CAS  PubMed  Google Scholar  * Xenitidis, T., Horger, M., Zeh, G., Kanz, L. & Henes, J. C. Sustained inflammation of the aortic wall despite


tocilizumab treatment in two cases of Takayasu arteritis. _Rheumatology (Oxford)_ 52, 1729–1731 (2013). Article  CAS  Google Scholar  * Evans, J. M., O'Fallon, W. M. & Hunder, G. G.


Increased incidence of aortic aneurysm and dissection in giant cell (temporal) arteritis. A population-based study. _Ann. Intern. Med._ 122, 502–507 (1995). Article  CAS  PubMed  Google


Scholar  * Weyand, C. M., Liao, Y. J. & Goronzy, J. J. The immunopathology of giant cell arteritis: diagnostic and therapeutic implications. _J. Neuroophthalmol._ 32, 259–265 (2012).


Article  PubMed  PubMed Central  Google Scholar  * Brack, A. _ et al_. Glucocorticoid-mediated repression of cytokine gene transcription in human arteritis-SCID chimeras. _J. Clin. Invest._


99, 2842–2850 (1997). Article  CAS  PubMed  PubMed Central  Google Scholar  * Pober, J. S. & Tellides, G. Participation of blood vessel cells in human adaptive immune responses. _Trends


Immunol._ 33, 49–57 (2012). Article  CAS  PubMed  Google Scholar  * Min, W. & Pober, J. S. AIP1 in graft arteriosclerosis. _Trends Cardiovasc. Med._ 21, 229–233 (2011). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Choi, J., Enis, D. R., Koh, K. P., Shiao, S. L. & Pober, J. S. T lymphocyte-endothelial cell interactions. _Annu. Rev. Immunol._ 22, 683–709


(2004). Article  CAS  PubMed  Google Scholar  * Tellides, G. & Pober, J. S. Interferon-gamma axis in graft arteriosclerosis. _Circ. Res._ 100, 622–632 (2007). Article  CAS  PubMed 


Google Scholar  * MacMicking, J. D. Interferon-inducible effector mechanisms in cell-autonomous immunity. _Nat. Rev. Immunol._ 12, 367–382 (2012). Article  CAS  PubMed  PubMed Central 


Google Scholar  * Zhang, S. Y. _ et al_. Inborn errors of interferon (IFN)-mediated immunity in humans: insights into the respective roles of IFN-α/β, IFN-γ, and IFN-λ in host defense.


_Immunol. Rev._ 226, 29–40 (2008). Article  CAS  PubMed  Google Scholar  * van Boxel-Dezaire, A. H. & Stark, G. R. Cell type-specific signaling in response to interferon-γ. _Curr. Top.


Microbiol. Immunol._ 316, 119–154 (2007). CAS  PubMed  Google Scholar  * Lee, Y. K., Mukasa, R., Hatton, R. D. & Weaver, C. T. Developmental plasticity of Th17 and Treg cells. _Curr.


Opin. Immunol._ 21, 274–280 (2009). Article  CAS  PubMed  Google Scholar  * Yu, L. _ et al_. AIP1 prevents graft arteriosclerosis by inhibiting interferon-γ-dependent smooth muscle cell


proliferation and intimal expansion. _Circ. Res._ 109, 418–427 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Kaiser, M., Weyand, C. M., Bjornsson, J. & Goronzy, J. J.


Platelet-derived growth factor, intimal hyperplasia, and ischemic complications in giant cell arteritis. _Arthritis Rheum._ 41, 623–633 (1998). Article  CAS  PubMed  Google Scholar  *


Kaiser, M., Younge, B., Bjornsson, J., Goronzy, J. J. & Weyand, C. M. Formation of new vasa vasorum in vasculitis. Production of angiogenic cytokines by multinucleated giant cells. _Am.


J. Pathol._ 155, 765–774 (1999). Article  CAS  PubMed  PubMed Central  Google Scholar  * Ahmad, U. _ et al_. IFN-gamma primes intact human coronary arteries and cultured coronary smooth


muscle cells to double-stranded RNA- and self-RNA-induced inflammatory responses by upregulating TLR3 and melanoma differentiation-associated gene 5. _J. Immunol._ 185, 1283–1294 (2010).


Article  CAS  PubMed  PubMed Central  Google Scholar  * Eid, R. E. _ et al_. Interleukin-17 and interferon-γ are produced concomitantly by human coronary artery-infiltrating T cells and act


synergistically on vascular smooth muscle cells. _Circulation_ 119, 1424–1432 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Petursdottir, V., Nordborg, E. & Nordborg,


C. Atrophy of the aortic media in giant cell arteritis. _APMIS_ 104, 191–198 (1996). Article  CAS  PubMed  Google Scholar  * Bai, Y. _ et al_. Interferon-gamma induces X-linked inhibitor of


apoptosis-associated factor-1 and Noxa expression and potentiates human vascular smooth muscle cell apoptosis by STAT3 activation. _J. Biol. Chem._ 283, 6832–6842 (2008). Article  CAS 


PubMed  Google Scholar  * Lacotte, S., Brun, S., Muller, S. & Dumortier, H. CXCR3, inflammation, and autoimmune diseases. _Ann. NY Acad. Sci._ 1173, 310–317 (2009). Article  CAS  PubMed


  Google Scholar  * Ciccia, F. _ et al_. IL-33 is overexpressed in the inflamed arteries of patients with giant cell arteritis. _Ann. Rheum. Dis._ 72, 258–264 (2013). Article  CAS  PubMed 


Google Scholar  * Ciccia, F. _ et al_. Expression of interleukin-32 in the inflamed arteries of patients with giant cell arteritis. _Arthritis Rheum._ 63, 2097–2104 (2011). Article  CAS 


PubMed  Google Scholar  * Nizzoli, G. _ et al_. Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses. _Blood_ 122, 932–942 (2013). Article 


CAS  PubMed  Google Scholar  * Makkuni, D. _ et al_. Is intimal hyperplasia a marker of neuro-ophthalmic complications of giant cell arteritis? _Rheumatology (Oxford)_ 47, 488–490 (2008).


Article  CAS  Google Scholar  * Salvarani, C. _ et al_. Risk factors for visual loss in an Italian population-based cohort of patients with giant cell arteritis. _Arthritis Rheum._ 53,


293–297 (2005). Article  PubMed  Google Scholar  * Gonzalez-Gay, M. A. _ et al_. Visual manifestations of giant cell arteritis. Trends and clinical spectrum in 161 patients. _Medicine


(Baltimore)_ 79, 283–292 (2000). Article  CAS  Google Scholar  * Singh, A. G. _ et al_. Visual manifestations in giant cell arteritis: trend over five decades. _Arthritis Rheum._ 64, S993


(2012). Article  CAS  Google Scholar  * Khokha, R., Murthy, A. & Weiss, A. Metalloproteinases and their natural inhibitors in inflammation and immunity. _Nat. Rev. Immunol._ 13, 649–665


(2013). Article  CAS  PubMed  Google Scholar  * Enzerink, A. & Vaheri, A. Fibroblast activation in vascular inflammation. _J. Thromb. Haemost._ 9, 619–626 (2011). Article  CAS  PubMed 


Google Scholar  * O'Shea, J. J., Ma, A. & Lipsky, P. Cytokines and autoimmunity. _Nat. Rev. Immunol._ 2, 37–45 (2002). Article  CAS  PubMed  Google Scholar  * Hoffman, G. S. _ et


al_. Infliximab for maintenance of glucocorticosteroid-induced remission of giant cell arteritis: a randomized trial. _Ann. Intern. Med._ 146, 621–630 (2007). Article  PubMed  Google Scholar


  * Kotter, I., Henes, J. C., Wagner, A. D., Loock, J. & Gross, W. L. Does glucocorticosteroid-resistant large-vessel vasculitis (giant cell arteritis and Takayasu arteritis) exist and


how can remission be achieved? A critical review of the literature. _Clin. Exp. Rheumatol._ 30, S114–129 (2012). PubMed  Google Scholar  * Adizie, T., Christidis, D., Dharmapaliah, C., Borg,


F. & Dasgupta, B. Efficacy and tolerability of leflunomide in difficult-to-treat polymyalgia rheumatica and giant cell arteritis: a case series. _Int. J. Clin. Pract._ 66, 906–909


(2012). Article  CAS  PubMed  Google Scholar  * Lie, J. T. Illustrated histopathologic classification criteria for selected vasculitis syndromes. American College of Rheumatology


Subcommittee on Classification of Vasculitis. Arthritis _Rheum._ 33, 1074–1087 (1990). CAS  Google Scholar  * Klein, R. G., Hunder, G. G., Stanson, A. W. & Sheps, S. G. Large artery


involvement in giant cell (temporal) arteritis. _Ann. Intern. Med._ 83, 806–812 (1975). Article  CAS  PubMed  Google Scholar  * Han, J. W. _ et al_. Vessel wall-embedded dendritic cells


induce T-cell autoreactivity and initiate vascular inflammation. _Circ. Res._ 102, 546–553 (2008). Article  CAS  PubMed  Google Scholar  * Agrawal, A., Sridharan, A., Prakash, S. &


Agrawal, H. Dendritic cells and aging: consequences for autoimmunity. _Expert Rev. Clin. Immunol._ 8, 73–80 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Shaw, A. C. _ et


al_. Dysregulation of human Toll-like receptor function in aging. _Ageing Res. Rev._ 10, 346–353 (2011). Article  CAS  PubMed  Google Scholar  * Shaw, A. C., Joshi, S., Greenwood, H., Panda,


A. & Lord, J. M. Aging of the innate immune system. _Curr. Opin. Immunol._ 22, 507–513 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  * Barone, F., Nayar, S. &


Buckley, C. D. The role of non-hematopoietic stromal cells in the persistence of inflammation. _Front. Immunol._ 3, 416 (2012). PubMed  Google Scholar  * Roozendaal, R. & Mebius, R. E.


Stromal cell-immune cell interactions. _Annu. Rev. Immunol._ 29, 23–43 (2011). Article  CAS  PubMed  Google Scholar  * Piggott, K. _ et al_. Blocking the NOTCH pathway inhibits vascular


inflammation in large-vessel vasculitis. _Circulation_ 123, 309–318 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Bray, S. J. Notch signalling: a simple pathway becomes


complex. _Nat. Rev. Mol. Cell Biol._ 7, 678–689 (2006). Article  CAS  PubMed  Google Scholar  * Tzoneva, G. & Ferrando, A. A. Recent advances on NOTCH signaling in T-ALL. _Curr. Top.


Microbiol. Immunol._ 360, 163–182 (2012). CAS  PubMed  Google Scholar  * Boucher, J., Gridley, T. & Liaw, L. Molecular pathways of notch signaling in vascular smooth muscle cells.


_Front. Physiol._ 3, 81 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Yang, K. & Proweller, A. Vascular smooth muscle Notch signals regulate endothelial cell


sensitivity to angiogenic stimulation. _J. Biol. Chem._ 286, 13741–13753 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Koyanagi, A., Sekine, C. & Yagita, H. Expression


of Notch receptors and ligands on immature and mature T cells. _Biochem. Biophys. Res. Commun._ 418, 799–805 (2012). Article  CAS  PubMed  Google Scholar  * Van de Walle, I. _ et al_.


Specific Notch receptor-ligand interactions control human TCR-αβ/γδ development by inducing differential Notch signal strength. _J. Exp. Med._ 210, 683–697 (2013). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Ilarregui, J. M. _ et al_. Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving


interleukin 27 and interleukin 10. _Nat. Immunol._ 10, 981–991 (2009). Article  CAS  PubMed  Google Scholar  * Svensson, M., Maroof, A., Ato, M. & Kaye, P. M. Stromal cells direct local


differentiation of regulatory dendritic cells. _Immunity._ 21, 805–816 (2004). Article  CAS  PubMed  Google Scholar  * Huang, Y. _ et al_. Kidney-derived stromal cells modulate dendritic and


T cell responses. _J. Am. Soc. Nephrol._ 20, 831–841 (2009). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, Q., Guo, Z., Xu, X., Xia, S. & Cao, X. Pulmonary stromal cells


induce the generation of regulatory DC attenuating T-cell-mediated lung inflammation. _Eur. J. Immunol._ 38, 2751–2761 (2008). Article  CAS  PubMed  Google Scholar  * Zhang, M. _ et al_.


Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. _Nat. Immunol._ 5, 1124–1133 (2004). Article  CAS  PubMed  Google Scholar  * Xiao, J. _ et al_.


Syndecan-1 displays a protective role in aortic aneurysm formation by modulating T cell-mediated responses. _Arterioscler. Thromb. Vasc. Biol._ 32, 386–396 (2012). Article  CAS  PubMed 


Google Scholar  * Pober, J. S. & Sessa, W. C. Evolving functions of endothelial cells in inflammation. _Nat. Rev. Immunol._ 7, 803–815 (2007). Article  CAS  PubMed  Google Scholar  *


Régent, A. _ et al_. Identification of target antigens of anti-endothelial cell and anti-vascular smooth muscle cell antibodies in patients with giant cell arteritis: a proteomic approach.


_Arthritis Res. Ther._ 13, R107 (2011). Article  PubMed  PubMed Central  Google Scholar  * Dimitrijevic, I., Andersson, C., Rissler, P. & Edvinsson, L. Increased tissue endothelin-1 and


endothelin-B receptor expression in temporal arteries from patients with giant cell arteritis. _Ophthalmology_ 117, 628–636 (2010). Article  PubMed  Google Scholar  Download references


ACKNOWLEDGEMENTS The authors would like to acknowledge support from grants from the NIH (R01 EY011916, P01 HL058000, U19 AI057266 and U19 AI090019) and the Govenar Discovery Fund (C. M.


Weyand). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Medicine, Division of Immunology and Rheumatology, Stanford University School of Medicine, CCSR Building Room 2225, Mail


Code 5166, 269 Campus Drive West, Stanford, 94305-5166, CA, USA Cornelia M. Weyand & Jörg J. Goronzy Authors * Cornelia M. Weyand View author publications You can also search for this


author inPubMed Google Scholar * Jörg J. Goronzy View author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS Both authors made equal contributions to


all aspects of this manuscript. CORRESPONDING AUTHOR Correspondence to Cornelia M. Weyand. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing financial interests.


POWERPOINT SLIDES POWERPOINT SLIDE FOR FIG. 1 POWERPOINT SLIDE FOR FIG. 2 POWERPOINT SLIDE FOR FIG. 3 POWERPOINT SLIDE FOR FIG. 4 POWERPOINT SLIDE FOR TABLE 1 RIGHTS AND PERMISSIONS Reprints


and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Weyand, C., Goronzy, J. Immune mechanisms in medium and large-vessel vasculitis. _Nat Rev Rheumatol_ 9, 731–740 (2013).


https://doi.org/10.1038/nrrheum.2013.161 Download citation * Published: 05 November 2013 * Issue Date: December 2013 * DOI: https://doi.org/10.1038/nrrheum.2013.161 SHARE THIS ARTICLE Anyone


you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by


the Springer Nature SharedIt content-sharing initiative