Structure and switching of bacterial flagellar filaments studied by x-ray fiber diffraction


Structure and switching of bacterial flagellar filaments studied by x-ray fiber diffraction

Play all audios:


ABSTRACT Bacterial motility involves switching between the left and right supercoiled states of the flagellar filament. The polymorphism of this assembly of identical flagellin molecules has


presented a structural puzzle. Supercoiling has been attributed to coexistence of two conformational states of the 11 nearly axially aligned protofilament strands of subunits. The helical


parameters of straight filaments in the left (L) and right (R) lattice states have now been accurately determined by X-ray fiber diffraction. The 9 Å resolution electron density map of the


R-type filament, refined from the X-ray data, reveals the interlocked α-helical segments of the core portion, which constitute the inner and outer tubes. While the inner-tube domain


interactions remain invariant, the strand joints in the outer tube can switch between the L- and R-state by 2–3 Å axial shifts, which change the strand periodicity of ∼50 Å by 0.8 Å. This


bi-stable quaternary switching results in supercoiling. Based on the measured helical parameters of the L and R lattices and the switching model, the twist and curvature calculated for the


ten possible supercoils are in quantitative accord with observed supercoiled forms of flagellar filaments. Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $209.00 per year only $17.42 per issue


Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL


ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS MOLECULAR STRUCTURE OF THE INTACT


BACTERIAL FLAGELLAR BASAL BODY Article 30 April 2021 THE CRYO-EM STRUCTURE OF THE BACTERIAL FLAGELLUM CAP COMPLEX SUGGESTS A MOLECULAR MECHANISM FOR FILAMENT ELONGATION Article Open access


25 June 2020 DYNAMIC STIFFENING OF THE FLAGELLAR HOOK Article Open access 25 May 2022 REFERENCES * Berg, H.C. & Anderson, R.A. Bacteria swim by rotating their flagellar filaments.


_Nature_ 245, 380–382 (1973). Article  CAS  Google Scholar  * Silverman, M. & Simon, M. Flagellar rotation and the mechanism of bacterial motility. _Nature_ 249, 73–74 (1974). Article 


CAS  Google Scholar  * Larsen, S.H., Reader, R.W., Kort, E.N., Tso, W.W. & Adler, J. Change in direction of flagellar rotation is the basis of the chemotactic response in _Escherichia


coli_. _Nature_ 249, 74–77 (1974). Article  CAS  Google Scholar  * Macnab, R.M. & Ornston, M.K. Normal-to-curly flagellar transitions and their role in bacterial tumbling, stabilization


of an alternative quaternary structure by mechanical force. _J. Mol. Biol._ 112, 1–30 (1977). Article  CAS  Google Scholar  * Leifson, E. _Atlas of bacterial flagellation._ (Academic Press,


New–York; 1960). Book  Google Scholar  * lino, T. & Mitani, M. Flagella-shape mutants in _Salmonella_. _J. Gen. Microbiol._ 44, 27–40 (1966). Article  Google Scholar  * Martinez, R.J.,


Ichiki, A.T., Lundh, N.P. & Tronick, S. R. Single amino acid substitution responsible for altered flagellar morphology. _J. Mol. Biol._ 34, 559–564 (1968). Article  CAS  Google Scholar 


* Asakura, S. & lino, T. Polymorphism of Salmonella flagella as investigated by means of in vitro copolymerization of flagellins derived from various strains. _J. Mol. Biol._ 4, 251–268


(1972). Article  Google Scholar  * lino, T., Oguchi, T. & Kuroiwa, T. Polymerization in flagellar-shape mutants of _Salmonella typhimurium_. _J. Gen. Microbiol._ 81, 37–45 (1974).


Article  Google Scholar  * Hyman, H.C. & Trachtenberg, S. Point mutations that lock Salmonella typhimurium flagellar filaments in the straight right-handed and left-handed form and their


relationship to filament superhelicity. _J. Mol. Biol._ 220, 79–88 (1991). Article  CAS  Google Scholar  * Kanto, S., Okino, H., Aizawa, S.-l. & Yamaguchi, S. Amino acids responsible


for flagellar shape are distributed in terminal regions of flagellin. _J. Mol. Biol._ 219, 471–480 (1991). Article  CAS  Google Scholar  * Kamiya, R. & Asakura, S. Helical


transformations of Salmonella flagella in vitro. _J. Mol. Biol._ 106, 167–186 (1976). Article  CAS  Google Scholar  * Kamiya, R. & Asakura, S. Flagellar transformations at alkaline pH.


_J. Mol. Biol._ 108, 513–518 (1977). Article  Google Scholar  * Hotani, H. Micro-video study of moving bacterial flagellar filaments III. Cyclic transformation induced by mechanical force.


_J. Mol. Biol._ 156, 791–806 (1982). Article  CAS  Google Scholar  * ÓBrien, E.J. & Bennett, P.M. Structure of straight flagella from a mutant Salmonella. _J. Mol. Biol._ 70, 133–152


(1972). Article  Google Scholar  * Asakura, S. Polymerization of flagellin and polymorphism of flagella. _Advan. Biophys._ 1, 99–155 (1970). CAS  Google Scholar  * Calladine, C.R.


Construction of bacterial flagella. _Nature_ 225, 121–124 (1975). Article  Google Scholar  * Calladine, C.R. Design requirements for the construction of bacterial flagella. _J. Theoret.


Biol._ 57, 469–489 (1976). Article  CAS  Google Scholar  * Calladine, C.R. Change of waveform in bacterial flagella: The role of mechanicsat the molecular level. _J. Mol. Biol._ 118, 457–479


(1978). Article  CAS  Google Scholar  * Kamiya, R., Asakura, S., Wakabayashi, K. & Namba, K. Transition of bacterial flagella from helical to straight forms with different subunit


arrangements. _J. Mol. Biol._ 131, 725–742 (1979). Article  CAS  Google Scholar  * Kamiya, R., Asakura, S. & Yamaguchi, S. Formation of helical filaments by copolymerization of two types


of ‘straight’ flagellins. _Nature_ 286, 628–630 (1980). Article  CAS  Google Scholar  * Mimori, Y. _et al._ The structure of the R-type straight flagellar filament of Salmonella at 9 Å


resolution by electron cryomicroscopy. _J. Mol. Biol._ 249, 69–87 (1995). Article  CAS  Google Scholar  * Morgan, D.G., Owen, C., Melanson, L A. & DeRosier, D. J. Structure of bacterial


flagellar filaments at 11 Å resolution: Packing of the α-helices. _J. Mol. Biol._ 249, 88–110 (1995). Article  CAS  Google Scholar  * Mimori-Kiyosue, Y., Vonderviszt, F., Yamashita, I.,


Fujiyoshi, Y. & Namba, K. Direct interaction of flagellin termini essential for polymorphic ability of flagellar filament. _Proc. Natl. Acad. Sci. USA._ 93, 15108–15113 (1996). Article 


CAS  Google Scholar  * Vonderviszt, F., Kanto, S., Aizawa, S.-l. & Namba, K. Terminal regions of flagellin are disordered in solution. _J. Mol. Biol._ 209, 127–133 (1989). Article  CAS 


Google Scholar  * Mimori-Kiyosue, Y., Vonderviszt, F. & Namba, K. Locations of terminal segments of flagellin in the filament structure and their roles in polymorphism and


polymerization. _J. Mol. Biol._ 270, 222–237 (1997). Article  CAS  Google Scholar  * Vonderviszt, F., Aizawa, S.-l. & Namba, K. Role of the disordered terminal regions of flagellin in


filament formation and stability. _J. Mol. Biol._ 221, 1461–1474 (1991). Article  CAS  Google Scholar  * Yamashita, I., Vonderviszt, F., Noguchi, T. & Namba, K. Preparing well-oriented


sols of straight flagellar filaments for X-ray fiber diffraction. _J. Mol. Biol._ 217, 293–302 (1991). Article  CAS  Google Scholar  * Namba, K., Yamashita, I. & Vonderviszt, F.


Structure of the core and central channel of bacterial flagella. _Nature_ 342, 648–654 (1989). Article  CAS  Google Scholar  * Yamashita, I. _et al._ Radial mass analysis of the flagellar


filament of Salmonella: Implications for subunit folding. _J. Mol. Biol._ 253, 547–558 (1995). Article  CAS  Google Scholar  * Namba, K. & Stubbs, G. Solving the phase problem in fiber


diffraction. Application to tobacco mosaic virus at 3.6 Å resolution. _Ada Crystallogr._ A41, 252–262 (1985). Article  CAS  Google Scholar  * Namba, K. & Vonderviszt, F. Molecular


architecture of bacterial flagellum. _Quart Rev. Biophys._ 30, 1–65 (1997). Article  CAS  Google Scholar  * Makowski, L. Processing of X-ray diffraction data from partially oriented


specimens. _J. Appl. Crystallogr._ 11, 273–283 (1978). Article  CAS  Google Scholar  * Hasegawa, K., Yamashita, I. & Namba, K. Quasi- and non-equivalence in the structure of bacterial


flagellar filament. _Biophys. J._ in the press. * Kamiya, R., Hotani, H. & Asakura, S. Polymorphic transition in bacterial flagella. _Symp. Soc. Exp. Biol._ 35, 53–76 (1985). Google


Scholar  Download references AUTHOR INFORMATION Author notes * Yuko Mimori-Kiyosue Present address: ERATO, Cell Axis Project, 17 Minamimachi, Nakadoji, Shimogyo, Kyoto, 600, Japan AUTHORS


AND AFFILIATIONS * International Institute for Advanced Research, Matsushita Electric Industrial Co., Ltd., 3-4 Hikaridai, Seika, 619-02, Japan llchiro Yamashita, Kazuya Hasegawa, Hirofumi


Suzuki, Ferenc Vonderviszt, Yuko Mimori-Kiyosue & Keiichi Namba * Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, 565, Japan Kazuya Hasegawa * Department of


Physics, University of Veszprém, Vészprem, Egyetem u.10., H-8201, Hungary Ferenc Vonderviszt Authors * llchiro Yamashita View author publications You can also search for this author inPubMed


 Google Scholar * Kazuya Hasegawa View author publications You can also search for this author inPubMed Google Scholar * Hirofumi Suzuki View author publications You can also search for this


author inPubMed Google Scholar * Ferenc Vonderviszt View author publications You can also search for this author inPubMed Google Scholar * Yuko Mimori-Kiyosue View author publications You


can also search for this author inPubMed Google Scholar * Keiichi Namba View author publications You can also search for this author inPubMed Google Scholar RIGHTS AND PERMISSIONS Reprints


and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Yamashita, l., Hasegawa, K., Suzuki, H. _et al._ Structure and switching of bacterial flagellar filaments studied by X-ray fiber


diffraction. _Nat Struct Mol Biol_ 5, 125–132 (1998). https://doi.org/10.1038/nsb0298-125 Download citation * Received: 29 July 1997 * Accepted: 29 December 1997 * Published: 01 February


1998 * Issue Date: 01 February 1998 * DOI: https://doi.org/10.1038/nsb0298-125 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable


link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative