Diet and tumor lkb1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo


Diet and tumor lkb1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo

Play all audios:


ABSTRACT Hypothesis-generating epidemiological research has suggested that cancer burden is reduced in diabetics treated with metformin and experimental work has raised questions regarding


the role of direct adenosine monophosphate-activated protein kinase (AMPK)-mediated anti-neoplastic effects of metformin as compared with indirect effects attributable to reductions in


circulating insulin levels in the host. We treated both tumor LKB1 expression and host diet as variables, and observed that metformin inhibited tumor growth and reduced insulin receptor


activation in tumors of mice with diet-induced hyperinsulinemia, independent of tumor LKB1 expression. In the absence of hyperinsulinemia, metformin inhibited only the growth of tumors


transfected with short hairpin RNA against LKB1, a finding attributable neither to an effect on host insulin level nor to activation of AMPK within the tumor. Further investigation _in


vitro_ showed that cells with reduced LKB1 expression are more sensitive to metformin-induced adenosine triphosphate depletion owing to impaired ability to activate LKB1-AMPK-dependent


energy-conservation mechanisms. Thus, loss of function of LKB1 can accelerate proliferation in contexts where it functions as a tumor suppressor, but can also sensitize cells to metformin.


These findings predict that any clinical utility of metformin or similar compounds in oncology will be restricted to subpopulations defined by host insulin levels and/or loss of function of


LKB1. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this


journal Receive 50 print issues and online access $259.00 per year only $5.18 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now


Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer


support SIMILAR CONTENT BEING VIEWED BY OTHERS A PRECISION MEDICINE APPROACH TO METABOLIC THERAPY FOR BREAST CANCER IN MICE Article Open access 20 May 2022 THE EFFECTS OF GLYCEMIC INDEX ON


PROSTATE CANCER PROGRESSION IN A XENOGRAFT MOUSE MODEL Article Open access 11 December 2023 CALORIC RESTRICTION LEADS TO DRUGGABLE LSD1-DEPENDENT CANCER STEM CELLS EXPANSION Article Open


access 27 January 2024 REFERENCES * Algire C, Amrein L, Zakikhani M, Panasci L, Pollak M . (2010). Metformin blocks the stimulative effect of a high energy diet on colon carcinoma growth _in


vivo_ and is associated with reduced expression of fatty acid acid synthase. _Endocr Relat Cancer_ 17: 351–360. Article  CAS  Google Scholar  * Algire C, Zakikhani M, Blouin M-J, Shuai JH,


Pollak M . (2008). Metformin attenuates the stimulatory effect of a high energy diet on _in vivo_ H59 carcinoma growth. _Endocr Relat Cancer_ 15: 833–839. Article  CAS  Google Scholar  *


Blake DA, McLean NV . (1989). A colorimetric assay for the measurement of -glucose consumption by cultured cells. _Anal Biochem_ 177: 156–160. Article  CAS  Google Scholar  * Bodmer M, Meier


C, Krahenbuhl S, Jick SS, Meier CR, Meier CR . (2010). Long-term metformin use is associated with decreased risk of breast cancer. _Diabetes Care_ 33: 1304–1308. Article  CAS  Google


Scholar  * Buzzai M, Jones RG, Amaravadi RK, Lum JJ, DeBerardinis RJ, Zhao F _et al_. (2007). Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor


cell growth. _Cancer Res_ 67: 6745–6752. Article  CAS  Google Scholar  * Currie CJ, Poole CD, Gale EA . (2009). The influence of glucose-lowering therapies on cancer risk in type 2 diabetes.


_Diabetologia_ 52: 1766–1777. Article  CAS  Google Scholar  * DeFronzo RA, Goodman AM . (1995). Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The


Multicenter Metformin Study Group. _N Engl J Med_ 333: 541–549. Article  CAS  Google Scholar  * Dowling RJ, Zakikhani M, Fantus IG, Pollak M, Sonenberg N . (2007). Metformin inhibits


mammalian target of rapamycin-dependent translation initiation in breast cancer cells. _Cancer Res_ 67: 10804–10812. Article  CAS  Google Scholar  * Dykens JA, Jamieson J, Marroquin L,


Nadanaciva S, Billis PA, Will Y . (2008). Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human


hepatocytes _in vitro_. _Toxicol Appl Pharmacol_ 233: 203–210. Article  CAS  Google Scholar  * Engelman, Cantley . (2010). Chemoprevention meets glucose control. _Can Prev Res_ 3: 1049–1052.


Article  CAS  Google Scholar  * El Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X . (2000). Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on


the respiratory chain complex I. _J Biol Chem_ 275: 223–228. Article  CAS  Google Scholar  * Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD . (2005). Metformin and reduced risk


of cancer in diabetic patients. _BMJ_ 330: 1304–1305. Article  Google Scholar  * Fantin VR, St Pierre J, Leder P . (2006). Attenuation of LDH-A expression uncovers a link between


glycolysis, mitochondrial physiology, and tumor maintenance. _Cancer Cell_ 9: 425–434. Article  CAS  Google Scholar  * Foretz M, Hebrard S, Leclerc J, Zarrinpashneh E, Soty M, Mithieux G _et


al_. (2010). Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. _J Clin Invest_ 120: 2267–2270. Article 


Google Scholar  * Hardie DG . (2006). Neither LKB1 nor AMPK are the direct targets of metformin. _Gastroenterology_ 131: 973. Article  Google Scholar  * Hardie DG . (2007).


AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. _Nat Rev Mol Cell Biol_ 8: 774–785. Article  CAS  Google Scholar  * Hosono K, Endo H, Takahashi H, Sugiyama M,


Sakai E, Uchiyama T _et al_. (2007). Metformin suppresses colorectal aberrant crypt foci in a short-term clinical trial. _Can Prev Res_ 3: 1077–1083. Article  Google Scholar  * Huang X,


Wullschleger S, Shpiro N, McGuire VA, Sakamoto K, Woods YL _et al_. (2008). Important role of the LKB1-AMPK pathway in suppressing tumourigenesis in PTEN deficient mice. _Biochem J_ 412:


211–221. Article  CAS  Google Scholar  * Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P _et al_. (2007). LKB1 modulates lung cancer differentiation and metastasis. _Nature_ 448:


807–810. Article  CAS  Google Scholar  * Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y _et al_. (2005). AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. _Mol


Cell_ 18: 283–293. Article  CAS  Google Scholar  * Kalaany NY, Sabatini DM . (2009). Tumours with PI3K activation are resistant to dietary restriction. _Nature_ 458: 725–731. Article  CAS 


Google Scholar  * Kalender A, Selvaraj A, Kim SY, Gulati P, Brule S, Viollet B _et al_. (2010). Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. _Cell Metab_


11: 390–401. Article  CAS  Google Scholar  * Kroemer G, Pouyssegur J . (2008). Tumor cell metabolism: cancer's Achilles’ heel. _Cancer Cell_ 13: 472–482. Article  CAS  Google Scholar 


* Landman GW, Kleefstra N, van Hateren KJ, Groenier KH, Gans RO, Bilo HJ . (2010). Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. _Diabetes Care_ 33:


322–326. Article  CAS  Google Scholar  * Larsson SC, Mantzoros CS, Wolk A . (2007). Diabetes mellitus and risk of breast cancer: a meta-analysis. _Int J Cancer_ 121: 856–862. Article  CAS 


Google Scholar  * Larsson SC, Orsini N, Wolk A . (2005). Diabetes mellitus and risk of colorectal cancer: a meta-analysis. _J Natl Cancer Inst_ 97: 1679–1687. Article  Google Scholar  *


Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM . (2009). New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes.


_Diabetes Care_ 32: 1620–1625. Article  CAS  Google Scholar  * Liu B, Fan Z, Edgerton SM, Deng XS, Alimova IN, Lind SE _et al_. (2009). Metformin induces unique biological and molecular


responses in triple negative breast cancer cells. _Cell Cycle_ 8: 2031–2040. Article  CAS  Google Scholar  * Memmott RM, Mercado JR, Maier CR, Kawabata S, Fox SD, Dennis PA . (2010).


Metformin prevents tobacco carcinogen-induced lung tumorigenesis. _Can Prev Res_ 3: 1066–1076. Article  CAS  Google Scholar  * Novosyadlyy R, Lann DE, Vijayakumar A, Rowzee A, Lazzarino DA,


Fierz Y _et al_. (2010). Insulin-mediated acceleration of breast cancer development and progression in a nonobese model of type 2 diabetes. _Cancer Res_ 70: 741–751. Article  CAS  Google


Scholar  * Owen MR, Doran E, Halestrap AP . (2000). Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. _Biochem


J_ 348 (Part 3): 607–614. Article  CAS  Google Scholar  * Pollak M . (2008). Insulin and insulin-like growth factor signalling in neoplasia. _Nat Rev Cancer_ 8: 915–928. Article  CAS  Google


Scholar  * Pollak M . (2009). Do cancer cells care if their host is hungry? _Cell Metab_ 9: 401–403. Article  CAS  Google Scholar  * Pollak M . (2010). Metformin and other biguanides in


oncology: advancing the research agenda. _Can Prev Res_ 3: 1060–1065. Article  CAS  Google Scholar  * Russell III RR, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M _et al_. (2004).


AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. _J Clin Invest_ 114: 495–503. Article  CAS  Google Scholar


  * Sakamoto K, McCarthy A, Smith D, Green KA, Grahame HD, Ashworth A _et al_. (2005). Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction.


_EMBO J_ 24: 1810–1820. Article  CAS  Google Scholar  * Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM _et al_. (2002). Inactivation of LKB1/STK11 is a common event


in adenocarcinomas of the lung. _Cancer Res_ 62: 3659–3662. CAS  PubMed  Google Scholar  * Shackelford DB, Shaw RJ . (2009). The LKB1-AMPK pathway: metabolism and growth control in tumour


suppression. _Nat Rev Cancer_ 9: 563–575. Article  CAS  Google Scholar  * Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, Depinho RA _et al_. (2004). The tumor suppressor LKB1 kinase


directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. _Proc Natl Acad Sci USA_ 101: 3329–3335. Article  CAS  Google Scholar  * Shaw RJ, Lamia KA,


Vasquez D, Koo SH, Bardeesy N, Depinho RA _et al_. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. _Science_ 310: 1642–1646. Article  CAS


  Google Scholar  * Tennant DA, Duran RV, Gottlieb E . (2010). Targeting metabolic transformation for cancer therapy. _Nat Rev Cancer_ 10: 267–277. Article  CAS  Google Scholar  * Tomimoto


A, Endo H, Sugiyama M, Fujisawa T, Hosono K, Takahashi H _et al_. (2008). Metformin suppresses intestinal polyp growth in ApcMin/+ mice. _Cancer Sci_ 99: 2136–2141. Article  CAS  Google


Scholar  * van Lier MG, Wagner A, Mathus-Vliegen EM, Kuipers EJ, Steyerberg EW, van Leerdam ME . (2010). High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance


recommendations. _Am J Gastroenterol_ 105: 1258–1264. Article  CAS  Google Scholar  * Venkateswaran V, Haddad AQ, Fleshner NE, Fan R, Sugar LM, Nam R _et al_. (2007). Association of


diet-induced hyperinsulinemia with accelerated growth of prostate cancer (LNCaP) xenografts. _J Natl Cancer Inst_ 99: 1793–1800. Article  Google Scholar  * Vigneri P, Frasca F, Sciacca L,


Pandini G, Vigneri R . (2009). Diabetes and cancer. _Endocr Relat Cancer_ 16: 1103–1123. Article  CAS  Google Scholar  * Wingo SN, Gallardo TD, Akbay EA, Liang MC, Contreras CM, Boren T _et


al_. (2009). Somatic LKB1 mutations promote cervical cancer progression. _PLoS One_ 4: e5137. Article  Google Scholar  * Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M . (2006).


Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. _Cancer Res_ 66: 10269–10273. Article  CAS  Google Scholar  * Zakikhani M, Dowling RJ, Sonenberg N, Pollak MN .


(2008). The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. _Cancer Prev Res (Phila, PA)_ 1: 369–375. Article  CAS 


Google Scholar  Download references ACKNOWLEDGEMENTS We thank Dr André Veillette for his advice and technical expertise, Dr Pnina Brodt for the MC38 cells, Drs Lawrence Panasci and Ernesto


Schiffrin for sharing laboratory resources, and Dr Nahum Sonenberg and Dr Russell Jones for reviewing the manuscript prior to submission. This work was supported by a grant from the Terry


Fox Research Institute. Ms Algire is supported through the Montréal Centre for Experimental Therapeutics in Cancer student fellowship and the Canadian Institute of Health Research Canada


Graduate Fellowship. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Departments of Experimental Medicine and Oncology, E423 Segal Cancer Centre of the Jewish General Hospital, McGill


University, Montréal, Québec, Canada C Algire & M Pollak * Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada L Amrein, M Bazile, S David & 


M Zakikhani Authors * C Algire View author publications You can also search for this author inPubMed Google Scholar * L Amrein View author publications You can also search for this author


inPubMed Google Scholar * M Bazile View author publications You can also search for this author inPubMed Google Scholar * S David View author publications You can also search for this author


inPubMed Google Scholar * M Zakikhani View author publications You can also search for this author inPubMed Google Scholar * M Pollak View author publications You can also search for this


author inPubMed Google Scholar CORRESPONDING AUTHOR Correspondence to M Pollak. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no conflict of interest. ADDITIONAL INFORMATION


Supplementary Information accompanies the paper on the Oncogene website SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURE 1A (PDF 90 KB) SUPPLEMENTARY FIGURE 1B (PDF 133 KB) SUPPLEMENTARY


FIGURE LEGEND (DOC 22 KB) SUPPLEMENTARY INFORMATION (DOC 21 KB) RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Algire, C., Amrein, L., Bazile, M. _et


al._ Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin _in vivo_. _Oncogene_ 30, 1174–1182 (2011). https://doi.org/10.1038/onc.2010.483


Download citation * Received: 08 July 2010 * Revised: 01 September 2010 * Accepted: 13 September 2010 * Published: 22 November 2010 * Issue Date: 10 March 2011 * DOI:


https://doi.org/10.1038/onc.2010.483 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a shareable link is not


currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative KEYWORDS * metformin * insulin * cancer * LKB1