Cell-type-specific disruption of perk-eif2α signaling in dopaminergic neurons alters motor and cognitive function


Cell-type-specific disruption of perk-eif2α signaling in dopaminergic neurons alters motor and cognitive function

Play all audios:


ABSTRACT Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) has been shown to activate the eIF2α kinase PERK to directly regulate translation initiation. Tight control


of PERK-eIF2α signaling has been shown to be necessary for normal long-lasting synaptic plasticity and cognitive function, including memory. In contrast, chronic activation of PERK-eIF2α


signaling has been shown to contribute to pathophysiology, including memory impairments, associated with multiple neurological diseases, making this pathway an attractive therapeutic target.


Herein, using multiple genetic approaches we show that selective deletion of the PERK in mouse midbrain dopaminergic (DA) neurons results in multiple cognitive and motor phenotypes.


Conditional expression of phospho-mutant eIF2α in DA neurons recapitulated the phenotypes caused by deletion of PERK, consistent with a causal role of decreased eIF2α phosphorylation for


these phenotypes. In addition, deletion of PERK in DA neurons resulted in altered de novo translation, as well as changes in axonal DA release and uptake in the striatum that mirror the


pattern of motor changes observed. Taken together, our findings show that proper regulation of PERK-eIF2α signaling in DA neurons is required for normal cognitive and motor function in a


non-pathological state, and also provide new insight concerning the onset of neuropsychiatric disorders that accompany UPR failure. Access through your institution Buy or subscribe This is a


preview of subscription content, access via your institution ACCESS OPTIONS Access through your institution Subscribe to this journal Receive 12 print issues and online access $259.00 per


year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated


during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS DEFICIENCY OF


PERRY SYNDROME-ASSOCIATED P150GLUED IN MIDBRAIN DOPAMINERGIC NEURONS LEADS TO PROGRESSIVE NEURODEGENERATION AND ENDOPLASMIC RETICULUM ABNORMALITIES Article Open access 07 March 2023 LOSS OF


DJ-1 FUNCTION CONTRIBUTES TO PARKINSON’S DISEASE PATHOGENESIS IN MICE _VIA_ RACK1-MEDIATED PKC ACTIVATION AND MAO-B UPREGULATION Article 25 May 2023 IMPAIRED STRIATAL GLUTATHIONE–ASCORBATE


METABOLISM INDUCES TRANSIENT DOPAMINE INCREASE AND MOTOR DYSFUNCTION Article Open access 28 October 2024 DATA AVAILABILITY The data that support the findings of this study are available from


the corresponding author upon request. REFERENCES * Costa-Mattioli M, Gobert D, Stern E, Gamache K, Colina R, Cuello C, et al. eIF2α phosphorylation bidirectionally regulates the switch


from short-to long-term synaptic plasticity and memory. Cell. 2007;129:195–206. Article  CAS  PubMed  PubMed Central  Google Scholar  * Di Prisco GV, Huang W, Buffington SA, Hsu C-C, Bonnen


PE, Placzek AN, et al. Translational control of mGluR-dependent long-term depression and object-place learning by eIF2α. Nat Neurosci. 2014;17:1073–82. Article  PubMed  Google Scholar  *


Trinh MA, Klann E. Translational control by eIF2α kinases in long-lasting synaptic plasticity and long-term memory. Neurobiol Learn Mem. 2013;105:93–9. Article  CAS  PubMed  PubMed Central 


Google Scholar  * Ma T, Trinh MA, Wexler AJ, Bourbon C, Gatti E, Pierre P, et al. Suppression of eIF2α kinases alleviates Alzheimer’s disease–related plasticity and memory deficits. Nat


Neurosci. 2013;16:1299. Article  CAS  PubMed  PubMed Central  Google Scholar  * Trinh MA, Kaphzan H, Wek RC, Pierre P, Cavener DR, Klann E. Brain-specific disruption of the eIF2α kinase PERK


decreases ATF4 expression and impairs behavioral flexibility. Cell Rep. 2012;1:676–88. Article  CAS  PubMed  PubMed Central  Google Scholar  * Trinh MA, Ma T, Kaphzan H, Bhattacharya A,


Antion MD, Cavener DR, et al. The eIF2α kinase PERK limits the expression of hippocampal metabotropic glutamate receptor-dependent long-term depression. Learn Mem. 2014;21:298–304. Article 


CAS  PubMed  PubMed Central  Google Scholar  * Zhu PJ, Huang W, Kalikulov D, Yoo JW, Placzek AN, Stoica L, et al. Suppression of PKR promotes network excitability and enhanced cognition by


interferon-γ-mediated disinhibition. Cell. 2011;147:1384–96. Article  CAS  PubMed  PubMed Central  Google Scholar  * Stern E, Chinnakkaruppan A, David O, Sonenberg N, Rosenblum K. Blocking


the eIF2α kinase (PKR) enhances positive and negative forms of cortex-dependent taste memory. J Neurosci. 2013;33:2517–25. Article  CAS  PubMed  PubMed Central  Google Scholar  *


Ounallah-Saad H, Sharma V, Edry E, Rosenblum K. Genetic or pharmacological reduction of PERK enhances cortical-dependent taste learning. J Neurosci. 2014;34:14624–32. Article  PubMed  PubMed


Central  Google Scholar  * Sharma V, Ounallah-Saad H, Chakraborty D, Hleihil M, Sood R, Barrera I, et al. Local inhibition of PERK enhances memory and reverses age-related deterioration of


cognitive and neuronal properties. J Neurosci. 2018;38:648–58. Article  CAS  PubMed  PubMed Central  Google Scholar  * Yang, W, Zhou, X, Zimmermann, HR & Ma, T. Brain-specific


suppression of AMPKα2 isoform impairs cognition and hippocampal LTP by PERK-mediated eIF2α phosphorylation. Mol Psychiatry. 2020: 1–18. * Ellgaard L, Helenius A. Quality control in the


endoplasmic reticulum. Nat Rev Mol Cell Biol. 2003;4:181. Article  CAS  PubMed  Google Scholar  * Martínez G, Duran‐Aniotz C, Cabral‐Miranda F, Vivar JP, Hetz C. Endoplasmic reticulum


proteostasis impairment in aging. Aging Cell. 2017;16:615–23. Article  PubMed  PubMed Central  Google Scholar  * Hetz C. The unfolded protein response: controlling cell fate decisions under


ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13:89–102. Article  CAS  PubMed  Google Scholar  * Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in


neurodegenerative diseases. Nat Rev Neurosci. 2014;15:233. Article  CAS  PubMed  Google Scholar  * Hughes, D & Mallucci, GR. The unfolded protein response in neurodegenerative


disorders–therapeutic modulation of the PERK pathway. FEBS J. 2018;286:342–55. * Smith HL, Mallucci GR. The unfolded protein response: mechanisms and therapy of neurodegeneration. Brain.


2016;139:2113–21. Article  PubMed  PubMed Central  Google Scholar  * Scheper W, Hoozemans JJ. The unfolded protein response in neurodegenerative diseases: a neuropathological perspective.


Acta Neuropathologica. 2015;130:315–31. Article  CAS  PubMed  PubMed Central  Google Scholar  * Gold PW, Licinio J, Pavlatou M. Pathological parainflammation and endoplasmic reticulum stress


in depression: potential translational targets through the CNS insulin, klotho and PPAR-γ systems. Mol Psychiatry. 2013;18:154–65. Article  CAS  PubMed  Google Scholar  * So J, Warsh JJ, Li


PP. Impaired endoplasmic reticulum stress response in B-lymphoblasts from patients with bipolar-I disorder. Biol Psychiatry. 2007;62:141–7. Article  CAS  PubMed  Google Scholar  * Kim, P,


Scott, MR & Meador-Woodruff, JH. Dysregulation of the unfolded protein response (UPR) in the dorsolateral prefrontal cortex in elderly patients with schizophrenia. Mol. Psychiatry.


2019;26:1–11. * Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–6. Article  CAS  PubMed  Google Scholar  * Klann E,


Dever TE. Biochemical mechanisms for translational regulation in synaptic plasticity. Nat Rev Neurosci. 2004;5:931. Article  CAS  PubMed  Google Scholar  * Urra H, Dufey E, Lisbona F,


Rojas-Rivera D, Hetz C. When ER stress reaches a dead end. Biochimica et Biophysica Acta (BBA)-Mol Cell Res. 2013;1833:3507–17. Article  CAS  Google Scholar  * Aguzzi A, O’connor T. Protein


aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov. 2010;9:237. Article  CAS  PubMed  Google Scholar  * Bandopadhyay R, de Belleroche J. Pathogenesis of


Parkinson’s disease: emerging role of molecular chaperones. Trends Mol Med. 2010;16:27–36. Article  CAS  PubMed  Google Scholar  * Soto C. Unfolding the role of protein misfolding in


neurodegenerative diseases. Nat Rev Neurosci. 2003;4:49. Article  CAS  PubMed  Google Scholar  * Hoozemans JJ, Van Haastert ES, Nijholt DA, Rozemuller AJ, Scheper W. Activation of the


unfolded protein response is an early event in Alzheimer’s and Parkinson’s disease. Neurodegenerative Dis. 2012;10:212–5. Article  CAS  Google Scholar  * Saxena S, Caroni P. Selective


neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration. Neuron. 2011;71:35–48. Article  CAS  PubMed  Google Scholar  * Mercado G, Castillo V, Soto P,


López N, Axten JM, Sardi SP, et al. Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson’s disease. Neurobiol Dis. 2018;112:136–48.


Article  CAS  PubMed  Google Scholar  * Schicknick H, Schott BH, Budinger E, Smalla K-H, Riedel A, Seidenbecher CI, et al. Dopaminergic modulation of auditory cortex-dependent memory


consolidation through mTOR. Cereb Cortex. 2008;18:2646–58. Article  PubMed  PubMed Central  Google Scholar  * Broussard JI, Yang K, Levine AT, Tsetsenis T, Jenson D, Cao F, et al. Dopamine


regulates aversive contextual learning and associated in vivo synaptic plasticity in the hippocampus. Cell Rep. 2016;14:1930–9. Article  CAS  PubMed  PubMed Central  Google Scholar  * Rosen


ZB, Cheung S, Siegelbaum SA. Midbrain dopamine neurons bidirectionally regulate CA3-CA1 synaptic drive. Nat Neurosci. 2015;18:1763. Article  CAS  PubMed  Google Scholar  * Kesby J, Eyles D,


McGrath J, Scott J. Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience. Transl Psychiatry. 2018;8:1–12. Article  Google Scholar  * Volkow ND,


Fowler JS, Wang G-J, Swanson JM. Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol Psychiatry. 2004;9:557–69. Article  CAS  PubMed  Google


Scholar  * Frank MJ, Santamaria A, O’Reilly RC, Willcutt E. Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder.


Neuropsychopharmacology. 2007;32:1583–99. Article  CAS  PubMed  Google Scholar  * Denys D, van der Wee N, Janssen J, De Geus F, Westenberg HG. Low level of dopaminergic D2 receptor binding


in obsessive-compulsive disorder. Biol Psychiatry. 2004;55:1041–5. Article  CAS  PubMed  Google Scholar  * Maia TV, Conceição VA. Dopaminergic disturbances in Tourette syndrome: an


integrative account. Biol Psychiatry. 2018;84:332–44. Article  CAS  PubMed  Google Scholar  * Hamilton PJ, Campbell NG, Sharma S, Erreger K, Hansen FH, Saunders C, et al. De novo mutation in


the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder. Mol Psychiatry. 2013;18:1315–23. Article  CAS  PubMed  PubMed Central  Google Scholar  * Ma T,


Klann E. PERK: a novel therapeutic target for neurodegenerative diseases? Alzheimer’s Res Ther. 2014;6:30. Article  Google Scholar  * Moreno JA, Radford H, Peretti D, Steinert JR, Verity N,


Martin MG, et al. Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature. 2012;485:507. Article  CAS  PubMed  PubMed Central  Google Scholar  * Hetz C, Axten


JM, Patterson JB. Pharmacological targeting of the unfolded protein response for disease intervention. Nat Chem Biol. 2019;15:764–75. Article  CAS  PubMed  Google Scholar  * Hetz C, Saxena


S. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol. 2017;13:477. Article  CAS  PubMed  Google Scholar  * Bäckman CM, Malik N, Zhang Y, Shan L, Grinberg A,


Hoffer BJ, et al. Characterization of a mouse strain expressing Cre recombinase from the 3′ untranslated region of the dopamine transporter locus. Genesis. 2006;44:383–90. Article  PubMed 


Google Scholar  * Zhang P, McGrath B, Li SA, Frank A, Zambito F, Reinert J, et al. The PERK eukaryotic initiation factor 2α kinase is required for the development of the skeletal system,


postnatal growth, and the function and viability of the pancreas. Mol Cell Biol. 2002;22:3864–74. Article  CAS  PubMed  PubMed Central  Google Scholar  * Madisen L, Zwingman TA, Sunkin SM,


Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010;13:133. Article  CAS  PubMed  Google


Scholar  * Nobili A, Latagliata EC, Viscomi MT, Cavallucci V, Cutuli D, Giacovazzo G, et al. Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer’s


disease. Nat Commun. 2017;8:14727. Article  CAS  PubMed  PubMed Central  Google Scholar  * Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, et al. Translational control is


required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell. 2001;7:1165–76. Article  CAS  PubMed  Google Scholar  * Tritsch NX, Sabatini BL. Dopaminergic modulation


of synaptic transmission in cortex and striatum. Neuron. 2012;76:33–50. Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen JY, Wang EA, Cepeda C, Levine MS. Dopamine imbalance in


Huntington’s disease: a mechanism for the lack of behavioral flexibility. Front Neurosci. 2013;7:114. Article  PubMed  PubMed Central  Google Scholar  * Howes OD, Montgomery AJ, Asselin M-C,


Murray RM, Valli I, Tabraham P, et al. Elevated striatal dopamine function linked to prodromal signs of schizophrenia. Arch Gen Psychiatry. 2009;66:13–20. Article  PubMed  Google Scholar  *


Egerton A, Chaddock CA, Winton-Brown TT, Bloomfield MA, Bhattacharyya S, Allen P, et al. Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: findings in a


second cohort. Biol Psychiatry. 2013;74:106–12. Article  CAS  PubMed  Google Scholar  * Cousins DA, Butts K, Young AH. The role of dopamine in bipolar disorder. Bipolar Disord.


2009;11:787–806. Article  CAS  PubMed  Google Scholar  * Nieminen-von Wendt TS, Metsähonkala L, Kulomäki TA, Aalto S, Autti TH, Vanhala R, et al. Increased presynaptic dopamine function in


Asperger syndrome. Neuroreport. 2004;15:757–60. Article  PubMed  Google Scholar  * Björklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci. 2007;30:194–202.


Article  PubMed  Google Scholar  * Zhou F-M, Liang Y, Dani JA. Endogenous nicotinic cholinergic activity regulates dopamine release in the striatum. Nat Neurosci. 2001;4:1224. Article  CAS


  PubMed  Google Scholar  * Rice ME, Cragg SJ. Nicotine amplifies reward-related dopamine signals in striatum. Nat Neurosci. 2004;7:583. Article  CAS  PubMed  Google Scholar  * Cachope R,


Mateo Y, Mathur BN, Irving J, Wang H-L, Morales M, et al. Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing.


Cell Rep. 2012;2:33–41. Article  CAS  PubMed  PubMed Central  Google Scholar  * Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ. Striatal dopamine release is triggered by


synchronized activity in cholinergic interneurons. Neuron. 2012;75:58–64. Article  CAS  PubMed  Google Scholar  * Viaro R, Calcagno M, Marti M, Borrelli E, Morari M. Pharmacological and


genetic evidence for pre-and postsynaptic D2 receptor involvement in motor responses to nociceptin/orphanin FQ receptor ligands. Neuropharmacology. 2013;72:126–38. Article  CAS  PubMed 


Google Scholar  * Calabresi P, Saiardi A, Pisani A, Baik J-H, Centonze D, Mercuri NB, et al. Abnormal synaptic plasticity in the striatum of mice lacking dopamine D2 receptors. J Neurosci.


1997;17:4536–44. Article  CAS  PubMed  PubMed Central  Google Scholar  * Yin HH, Davis MI, Ronesi JA, Lovinger DM. The role of protein synthesis in striatal long-term depression. J Neurosci.


2006;26:11811–20. Article  CAS  PubMed  PubMed Central  Google Scholar  * Lüscher C, Huber KM. Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for


circuitry and disease. Neuron. 2010;65:445–59. Article  PubMed  PubMed Central  Google Scholar  * Calabresi P, Picconi B, Tozzi A, Di Filippo M. Dopamine-mediated regulation of


corticostriatal synaptic plasticity. Trends Neurosci. 2007;30:211–9. Article  CAS  PubMed  Google Scholar  * Goldberg MS, Pisani A, Haburcak M, Vortherms TA, Kitada T, Costa C, et al.


Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron. 2005;45:489–96. Article  CAS  PubMed  Google Scholar  *


Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14:609–25. Article  CAS  PubMed  Google Scholar  * Gompf HS, Budygin EA, Fuller PM, Bass CE.


Targeted genetic manipulations of neuronal subtypes using promoter-specific combinatorial AAVs in wild-type animals. Front Behav Neurosci. 2015;9:152. Article  PubMed  PubMed Central  Google


Scholar  * Edwards NJ, Tejeda HA, Pignatelli M, Zhang S, McDevitt RA, Wu J, et al. Circuit specificity in the inhibitory architecture of the VTA regulates cocaine-induced behavior. Nat


Neurosci. 2017;20:438. Article  CAS  PubMed  Google Scholar  * Lee HJ, Gallagher M, Holland PC. The central amygdala projection to the substantia nigra reflects prediction error information


in appetitive conditioning. Learn Mem. 2010;17:531–8. Article  PubMed  PubMed Central  Google Scholar  * Duran-Aniotz C, Cornejo VH, Espinoza S, Ardiles ÁO, Medinas DB, Salazar C, et al.


IRE1 signaling exacerbates Alzheimer’s disease pathogenesis. Acta Neuropathologica. 2017;134:489–506. Article  CAS  PubMed  Google Scholar  * Cooper AA, Gitler AD, Cashikar A, Haynes CM,


Hill KJ, Bhullar B, et al. α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science. 2006;313:324–38. Article  CAS  PubMed  PubMed Central  Google


Scholar  * Costa-Mattioli M, Gobert D, Harding H, Herdy B, Azzi M, Bruno M, et al. Translational control of hippocampal synaptic plasticity and memory by the eIF2α kinase GCN2. Nature.


2005;436:1166. Article  CAS  PubMed  PubMed Central  Google Scholar  * Jiang Z, Belforte JE, Lu Y, Yabe Y, Pickel J, Smith CB, et al. eIF2α phosphorylation-dependent translation in CA1


pyramidal cells impairs hippocampal memory consolidation without affecting general translation. J Neurosci. 2010;30:2582–94. Article  CAS  PubMed  PubMed Central  Google Scholar  * Sidrauski


C, Acosta-Alvear D, Khoutorsky A, Vedantham P, Hearn BR, Li H, et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife. 2013;2:e00498. Article  PubMed 


PubMed Central  Google Scholar  * Tsaytler P, Harding HP, Ron D, Bertolotti A. Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science.


2011;332:91–94. Article  CAS  PubMed  Google Scholar  * Bond, S, Lopez-Lloreda, C, Gannon, PJ, Akay-Espinoza, C & Jordan-Sciutto, KL. The Integrated Stress Response and Phosphorylated


Eukaryotic Initiation Factor 2α in Neurodegeneration. J Neuropathol Exp Neurol. 2020;79:123–43 * Rittiner JE, Caffall ZF, Hernández-Martinez R, Sanderson SM, Pearson JL, Tsukayama KK, et al.


Functional genomic analyses of mendelian and sporadic disease identify impaired eIF2α signaling as a generalizable mechanism for dystonia. Neuron. 2016;92:1238–51. Article  CAS  PubMed 


PubMed Central  Google Scholar  * Kabir Z, Che A, Fischer D, Rice R, Rizzo B, Byrne M, et al. Rescue of impaired sociability and anxiety-like behavior in adult cacna1c-deficient mice by


pharmacologically targeting eIF2α. Mol Psychiatry. 2017;22:1096–109. Article  CAS  PubMed  PubMed Central  Google Scholar  * Arioka Y, Shishido E, Kushima I, Suzuki T, Saito R, Aiba A, et


al. Chromosome 22q11. 2 deletion causes PERK-dependent vulnerability in dopaminergic neurons. EBioMedicine. 2021;63:103138. Article  CAS  PubMed  Google Scholar  * Buffington SA, Huang W,


Costa-Mattioli M. Translational control in synaptic plasticity and cognitive dysfunction. Annu Rev Neurosci. 2014;37:17–38. Article  CAS  PubMed  PubMed Central  Google Scholar  * Brichta L,


Greengard P. Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: an update. Front Neuroanat. 2014;8:152. Article  PubMed  PubMed Central  Google Scholar 


* Liljeholm M, O’Doherty JP. Contributions of the striatum to learning, motivation, and performance: an associative account. Trends Cogn Sci. 2012;16:467–75. Article  PubMed  PubMed Central


  Google Scholar  * Kreitzer AC, Malenka RC. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature. 2007;445:643–7. Article  CAS  PubMed 


Google Scholar  * Shen W, Flajolet M, Greengard P, Surmeier DJ. Dichotomous dopaminergic control of striatal synaptic plasticity. Science. 2008;321:848–51. Article  CAS  PubMed  PubMed


Central  Google Scholar  * Grimm CM, Aksamaz S, Schulz S, Teutsch J, Sicinski P, Liss B, et al. Schizophrenia-related cognitive dysfunction in the Cyclin-D2 knockout mouse model of ventral


hippocampal hyperactivity. Transl Psychiatry. 2018;8:1–16. Article  Google Scholar  * Haber SN, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral


from the shell to the dorsolateral striatum. J Neurosci. 2000;20:2369–82. Article  CAS  PubMed  PubMed Central  Google Scholar  * Yang K, Dani JA. Dopamine D1 and D5 receptors modulate spike


timing-dependent plasticity at medial perforant path to dentate granule cell synapses. J Neurosci. 2014;34:15888–97. Article  PubMed  PubMed Central  Google Scholar  * Lemon N,


Manahan-Vaughan D. Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression. J Neurosci. 2006;26:7723–9. Article


  CAS  PubMed  PubMed Central  Google Scholar  * Swant J, Wagner JJ. Dopamine transporter blockade increases LTP in the CA1 region of the rat hippocampus via activation of the D3 dopamine


receptor. Learn Mem. 2006;13:161–7. Article  CAS  PubMed  PubMed Central  Google Scholar  * McNamara CG, Tejero-Cantero Á, Trouche S, Campo-Urriza N, Dupret D. Dopaminergic neurons promote


hippocampal reactivation and spatial memory persistence. Nat Neurosci. 2014;17:1658. Article  CAS  PubMed  PubMed Central  Google Scholar  * Li S, Cullen WK, Anwyl R, Rowan MJ.


Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat Neurosci. 2003;6:526. Article  CAS  PubMed  Google Scholar  * Hagena H,


Manahan-Vaughan D. Dopamine D1/D5, but not D2/D3, receptor dependency of synaptic plasticity at hippocampal mossy fiber synapses that is enabled by patterned afferent stimulation, or spatial


learning. Front Synaptic Neurosci. 2016;8:31. Article  PubMed  PubMed Central  Google Scholar  * Guzmán-Ramos K, Moreno-Castilla P, Castro-Cruz M, McGaugh JL, Martínez-Coria H, LaFerla FM,


et al. Restoration of dopamine release deficits during object recognition memory acquisition attenuates cognitive impairment in a triple transgenic mice model of Alzheimer’s disease. Learn


Mem. 2012;19:453–60. Article  PubMed  Google Scholar  * Rossato JI, Radiske A, Kohler CA, Gonzalez C, Bevilaqua LR, Medina JH, et al. Consolidation of object recognition memory requires


simultaneous activation of dopamine D1/D5 receptors in the amygdala and medial prefrontal cortex but not in the hippocampus. Neurobiol Learn Mem. 2013;106:66–70. Article  CAS  PubMed  Google


Scholar  * Maia TV, Frank MJ. From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci. 2011;14:154. Article  CAS  PubMed  PubMed Central  Google Scholar 


* Lisman JE, Pi HJ, Zhang Y, Otmakhova NA. A thalamo-hippocampal-ventral tegmental area loop may produce the positive feedback that underlies the psychotic break in schizophrenia. Biol


Psychiatry. 2010;68:17–24. Article  PubMed  PubMed Central  Google Scholar  * Colla E, Jensen PH, Pletnikova O, Troncoso JC, Glabe C, Lee MK. Accumulation of toxic α-synuclein oligomer


within endoplasmic reticulum occurs in α-synucleinopathy in vivo. J Neurosci. 2012;32:3301–5. Article  CAS  PubMed  PubMed Central  Google Scholar  * Das I, Krzyzosiak A, Schneider K,


Wrabetz L, D’Antonio M, Barry N, et al. Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit. Science. 2015;348:239–42. Article  CAS  PubMed  PubMed


Central  Google Scholar  * Wang L, Popko B, Tixier E, Roos RP. Guanabenz, which enhances the unfolded protein response, ameliorates mutant SOD1-induced amyotrophic lateral sclerosis.


Neurobiol Dis. 2014;71:317–24. Article  CAS  PubMed  Google Scholar  * Back SH, Scheuner D, Han J, Song B, Ribick M, Wang J, et al. Translation attenuation through eIF2α phosphorylation


prevents oxidative stress and maintains the differentiated state in β cells. Cell Metab. 2009;10:13–26. Article  CAS  PubMed  PubMed Central  Google Scholar  * Longo F, Russo I, Shimshek DR,


Greggio E, Morari M. Genetic and pharmacological evidence that G2019S LRRK2 confers a hyperkinetic phenotype, resistant to motor decline associated with aging. Neurobiol Dis. 2014;71:62–73.


Article  CAS  PubMed  PubMed Central  Google Scholar  * Bhattacharya A, Kaphzan H, Alvarez-Dieppa AC, Murphy JP, Pierre P, Klann E. Genetic removal of p70 S6 kinase 1 corrects molecular,


synaptic, and behavioral phenotypes in fragile X syndrome mice. Neuron. 2012;76:325–37. Article  CAS  PubMed  PubMed Central  Google Scholar  * Errico F, Santini E, Migliarini S, Borgkvist


A, Centonze D, Nasti V, et al. The GTP-binding protein Rhes modulates dopamine signalling in striatal medium spiny neurons. Mol Cell Neurosci. 2008;37:335–45. Article  CAS  PubMed  Google


Scholar  * Santini E, Huynh TN, MacAskill AF, Carter AG, Pierre P, Ruggero D, et al. Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature.


2013;493:411–5. Article  CAS  PubMed  Google Scholar  * Huynh TN, Santini E, Klann E. Requirement of Mammalian target of rapamycin complex 1 downstream effectors in cued fear memory


reconsolidation and its persistence. J Neurosci. 2014;34:9034–9. Article  CAS  PubMed  PubMed Central  Google Scholar  * Bowling H, Bhattacharya A, Zhang G, Lebowitz JZ, Alam D, Smith PT, et


al. BONLAC: a combinatorial proteomic technique to measure stimulus-induced translational profiles in brain slices. Neuropharmacology. 2016;100:76–89. Article  CAS  PubMed  Google Scholar 


* Schmidt EK, Clavarino G, Ceppi M, Pierre P. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods. 2009;6:275. Article  CAS  PubMed  Google Scholar  * Hou L, Antion MD,


Hu D, Spencer CM, Paylor R, Klann E. Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron.


2006;51:441–54. Article  CAS  PubMed  Google Scholar  * Stouffer MA, Woods CA, Patel JC, Lee CR, Witkovsky P, Bao L, et al. Insulin enhances striatal dopamine release by activating


cholinergic interneurons and thereby signals reward. Nat Commun. 2015;6:8543. Article  CAS  PubMed  Google Scholar  * Li X, Patel JC, Wang J, Avshalumov MV, Nicholson C, Buxbaum JD, et al.


Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson’s disease mutation G2019S. J Neurosci. 2010;30:1788–97.


Article  CAS  PubMed  PubMed Central  Google Scholar  * Schmitz Y, Lee CJ, Schmauss C, Gonon F, Sulzer D. Amphetamine distorts stimulation-dependent dopamine overflow: effects on D2


autoreceptors, transporters, and synaptic vesicle stores. J Neurosci. 2001;21:5916–24. Article  CAS  PubMed  PubMed Central  Google Scholar  * O’Neill B, Patel JC, Rice ME. Characterization


of optically and electrically evoked dopamine release in striatal slices from digenic knock-in mice with DAT-driven expression of channelrhodopsin. ACS Chem Neurosci. 2017;8:310–9. Article 


PubMed  Google Scholar  Download references ACKNOWLEDGEMENTS We thank Dr Caroline Bass (University at Buffalo) for providing the AAV2/10-TH-iCre and AAV2/10-TH-dsRED adeno-associated viruses


and Dr Randal Kaufman (Sanford Burnham Prebys Medical Discovery Institute) for providing the Eif2(S51A) mouse line; We wish to acknowledge Claudia Farb for exceptional technical assistance


and Dr Prerana Shrestha for critical advice and review of this paper. We thank all members of the Klann laboratory for critical feedback and discussions. The MATLAB script for Vmax analysis


was written and provided by Dr Charles Nicholson at NYU Grossman School of Medicine. This study was supported by National Institutes of Health Grants NS034007 and NS047384 (EK), DA038616


(MER), U.S. Department of Defense Award W81XWH-15-1-0360 (EK), and the Marlene and Paolo Fresco Institute for Parkinson’s Disease and Movement Disorders (MM and MER). AUTHOR INFORMATION


AUTHORS AND AFFILIATIONS * Center for Neural Science, New York University, New York, NY, USA Francesco Longo, Pierre L. Ibraheem, Sameer Aryal, Caterina Mesini, Maggie Mamcarz, Emanuela


Santini & Eric Klann * Department Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA Maria Mancini & Margaret E. Rice * Sackler Institute of Graduate Biomedical


Sciences, NYU School of Medicine, New York, NY, USA Sameer Aryal * Department of Neurosurgery, NYU School of Medicine, New York, NY, USA Jyoti C. Patel, Elena Penhos, Nazia Rahman & 


Margaret E. Rice * NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA Jyoti C. Patel, Elena Penhos, Nazia Rahman, Margaret E. Rice & Eric


Klann * Department of Neuroscience, Biomedicum, Karolinska Institute, Stockholm, Sweden Emanuela Santini Authors * Francesco Longo View author publications You can also search for this


author inPubMed Google Scholar * Maria Mancini View author publications You can also search for this author inPubMed Google Scholar * Pierre L. Ibraheem View author publications You can also


search for this author inPubMed Google Scholar * Sameer Aryal View author publications You can also search for this author inPubMed Google Scholar * Caterina Mesini View author publications


You can also search for this author inPubMed Google Scholar * Jyoti C. Patel View author publications You can also search for this author inPubMed Google Scholar * Elena Penhos View author


publications You can also search for this author inPubMed Google Scholar * Nazia Rahman View author publications You can also search for this author inPubMed Google Scholar * Maggie Mamcarz


View author publications You can also search for this author inPubMed Google Scholar * Emanuela Santini View author publications You can also search for this author inPubMed Google Scholar *


Margaret E. Rice View author publications You can also search for this author inPubMed Google Scholar * Eric Klann View author publications You can also search for this author inPubMed 


Google Scholar CONTRIBUTIONS FL carried out the behavioral experiments, performed slice electrophysiology experiments, and collected and analyzed all in vivo and ex vivo data. MM carried out


and analyzed the FSCV experiments. SA carried out western blotting and collected ex vivo data. PLI and CM carried out behavioral experiments and collected in vivo and ex vivo data. JCP


performed DAT-mediated dopamine uptake analysis. MER coordinated, performed, and analyzed HPLC experiments. EP and NR carried out HPLC experiments. MD performed genotyping of the mice. FL,


EK, ES conceived the studies. MM and MER participated in the design of the studies. FL and EK designed and coordinated all experiments and wrote the paper. All authors read and commented on


the paper. CORRESPONDING AUTHOR Correspondence to Eric Klann. ETHICS DECLARATIONS CONFLICT OF INTEREST The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER’S NOTE


Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY FIGURES RIGHTS AND PERMISSIONS


Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Longo, F., Mancini, M., Ibraheem, P.L. _et al._ Cell-type-specific disruption of PERK-eIF2α signaling in dopaminergic neurons


alters motor and cognitive function. _Mol Psychiatry_ 26, 6427–6450 (2021). https://doi.org/10.1038/s41380-021-01099-w Download citation * Received: 08 October 2020 * Revised: 20 March 2021


* Accepted: 01 April 2021 * Published: 20 April 2021 * Issue Date: November 2021 * DOI: https://doi.org/10.1038/s41380-021-01099-w SHARE THIS ARTICLE Anyone you share the following link with


will be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative