Photoacoustic imaging of elevated glutathione in models of lung cancer for companion diagnostic applications


Photoacoustic imaging of elevated glutathione in models of lung cancer for companion diagnostic applications

Play all audios:


ABSTRACT Companion diagnostics (CDx) are powerful tests that can provide physicians with crucial biomarker information that can improve treatment outcomes by matching therapies to patients.


Here, we report a photoacoustic imaging-based CDx (PACDx) for the selective detection of elevated glutathione (GSH) in a lung cancer model. GSH is abundant in most cells, so we adopted a


physical organic chemistry approach to precisely tune the reactivity to distinguish between normal and pathological states. To evaluate the efficacy of PACDx in vivo, we designed a blind


study where photoacoustic imaging was used to identify mice bearing lung xenografts. We also employed PACDx in orthotopic lung cancer and liver metastasis models to image GSH. In addition,


we designed a matching prodrug, PARx, that uses the same SNAr chemistry to release a chemotherapeutic with an integrated PA readout. Studies demonstrate that PARx can inhibit tumour growth


without off-target toxicity in a lung cancer xenograft model. Access through your institution Buy or subscribe This is a preview of subscription content, access via your institution ACCESS


OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access subscription $32.99 / 30 days cancel any time Learn


more Subscribe to this journal Receive 12 print issues and online access $259.00 per year only $21.58 per issue Learn more Buy this article * Purchase on SpringerLink * Instant access to


full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS: * Log in * Learn about institutional subscriptions * Read our


FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS RAPID IMAGING OF LUNG CANCER USING A RED FLUORESCENT PROBE TO DETECT DIPEPTIDYL PEPTIDASE 4 AND PUROMYCIN-SENSITIVE


AMINOPEPTIDASE ACTIVITIES Article Open access 01 June 2022 COMPARATIVE ONCOLOGY CHEMOSENSITIVITY ASSAY FOR PERSONALIZED MEDICINE USING LOW-COHERENCE DIGITAL HOLOGRAPHY OF DYNAMIC LIGHT


SCATTERING FROM CANCER BIOPSIES Article Open access 08 February 2024 PHOTOACOUSTIC POLYDOPAMINE-INDOCYANINE GREEN (PDA-ICG) NANOPROBE FOR DETECTION OF SENESCENT CELLS Article Open access 27


November 2024 DATA AVAILABILITY All data are available within the Article and its Supplementary Information. Alternatively, data are available upon request from the corresponding author.


REFERENCES * Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. _CA Cancer J. Clin._ 70, 7–30 (2020). Article  PubMed  Google Scholar  * Dracopoli, N. C. & Boguski, M.


S. The evolution of oncology companion diagnostics from signal transduction to immuno-oncology. _Trends Pharmacol. Sci._ 38, 41–54 (2017). Article  CAS  PubMed  Google Scholar  * Agarwal,


A., Ressler, D. & Snyder, G. The current and future state of companion diagnostics. _Pharmgenomics Pers. Med._ 8, 99–110 (2015). PubMed  PubMed Central  Google Scholar  * Wang, L. V.


& Hu, S. Photoacoustic tomography: in vivo imaging from organelles to organs. _Science_ 335, 1458–1462 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Heijblom, M. et al.


Photoacoustic image patterns of breast carcinoma and comparisons with magnetic resonance imaging and vascular stained histopathology. _Sci. Rep._ 5, 11778 (2015). Article  CAS  PubMed 


PubMed Central  Google Scholar  * Yang, M. et al. Photoacoustic/ultrasound dual imaging of human thyroid cancers: an initial clinical study. _Biomed. Opt. Express_ 8, 3449–3457 (2017).


Article  PubMed  PubMed Central  Google Scholar  * Jo, J. et al. A functional study of human inflammatory arthritis using photoacoustic imaging. _Sci. Rep._ 7, 15026 (2017). Article  PubMed


  PubMed Central  Google Scholar  * Liu, Y., Zhang, L., Li, S., Han, X. & Yuan, Z. Imaging molecular signatures for clinical detection of scleroderma in the hand by multispectral


photoacoustic elastic tomography. _J. Biophoton._ 11, e201700267 (2018). Article  Google Scholar  * Reinhardt, C. J. & Chan, J. Development of photoacoustic probes for in vivo molecular


imaging. _Biochemistry_ 57, 194–199 (2018). Article  CAS  PubMed  Google Scholar  * Knox, H. J. & Chan, J. Acoustogenic probes: a new frontier in photoacoustic imaging. _Acc. Chem. Res._


51, 2897–2905 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Li, H., Zhang, P., Smaga, L. P., Hoffman, R. A. & Chan, J. Photoacoustic probes for ratiometric imaging of


copper(II). _J. Am. Chem. Soc._ 137, 15628–15631 (2015). Article  CAS  PubMed  Google Scholar  * Mishra, A., Jiang, Y., Roberts, S., Ntziachristos, V. & Westmeyer, G. G. Near-infrared


photoacoustic imaging probe responsive to calcium. _Anal. Chem._ 88, 10785–10789 (2016). Article  CAS  PubMed  Google Scholar  * Roberts, S. et al. Calcium sensor for photoacoustic imaging.


_J. Am. Chem. Soc._ 140, 2718–2721 (2018). Article  CAS  PubMed  Google Scholar  * Wang, S. et al. Activatable small-molecule photoacoustic probes that cross the blood–brain barrier for


visualization of copper(II) in mice with Alzheimer’s disease. _Angew. Chem. Int. Ed._ 58, 12415–12419 (2019). Article  Google Scholar  * Lucero, M. Y. et al. Activity-based photoacoustic


probe for biopsy-free assessment of copper in murine models of Wilson’s disease and liver metastasis. _Proc. Natl Acad. Sci. USA_ 118, e2106943118 (2021). Article  CAS  PubMed  Google


Scholar  * Knox, H. J. et al. A bioreducible _N_-oxide-based probe for photoacoustic imaging of hypoxia. _Nat. Commun._ 8, 1794 (2017). Article  PubMed  PubMed Central  Google Scholar  *


Knox, H. J., Kim, T. W., Zhu, Z. & Chan, J. Photophysical tuning of _N_-oxide-based probes enables ratiometric photoacoustic imaging of tumor hypoxia. _ACS Chem. Biol._ 13, 1838–1843


(2018). Article  CAS  PubMed  Google Scholar  * Chen, M. et al. Simultaneous photoacoustic imaging of intravascular and tissue oxygenation. _Opt. Lett._ 44, 3773–3776 (2019). Article  CAS 


PubMed  PubMed Central  Google Scholar  * Zhou, E. Y., Knox, H. J., Liu, C., Zhao, W. & Chan, J. A conformationally restricted aza-BODIPY platform for stimulus-responsive probes with


enhanced photoacoustic properties. _J. Am. Chem. Soc._ 141, 17601–17609 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Gardner, S. H. et al. A general approach to convert


hemicyanine dyes into highly optimized photoacoustic scaffolds for analyte sensing. _Angew. Chem. Int. Ed._ 60, 18860–18866 (2021). Article  CAS  Google Scholar  * Yin, L. et al.


Quantitatively visualizing tumor-related protease activity in vivo using a ratiometric photoacoustic probe. _J. Am. Chem. Soc._ 141, 3265–3273 (2019). Article  CAS  PubMed  Google Scholar  *


Levi, J. et al. Design, synthesis and imaging of an activatable photoacoustic probe. _J. Am. Chem. Soc._ 132, 11264–11269 (2010). Article  CAS  PubMed  PubMed Central  Google Scholar  *


Reinhardt, C. J., Zhou, E. Y., Jorgensen, M. D., Partipilo, G. & Chan, J. A ratiometric acoustogenic probe for in vivo imaging of endogenous nitric oxide. _J. Am. Chem. Soc._ 140,


1011–1018 (2018). Article  CAS  PubMed  PubMed Central  Google Scholar  * Reinhardt, C. J., Xu, R. & Chan, J. Nitric oxide imaging in cancer enabled by steric relaxation of a


photoacoustic probe platform. _Chem. Sci._ 11, 1587–1592 (2020). Article  CAS  Google Scholar  * Lucero, M. Y. et al. Development of NIR-II photoacoustic probes tailored for deep-tissue


sensing of nitric oxide. _J. Am. Chem. Soc._ 143, 7196–7202 (2021). Article  CAS  PubMed  PubMed Central  Google Scholar  * Chen, Z. et al. An optical/photoacoustic dual-modality probe:


ratiometric in/ex vivo imaging for stimulated H2S upregulation in mice. _J. Am. Chem. Soc._ 141, 17973–17977 (2019). Article  CAS  PubMed  Google Scholar  * Forman, H. J., Zhang, H. &


Rinna, A. Glutathione: overview of its protective roles, measurement and biosynthesis. _Mol. Aspects Med._ 30, 1–12 (2009). Article  CAS  PubMed  Google Scholar  * Balendiran, G. K., Dabur,


R. & Fraser, D. The role of glutathione in cancer. _Cell Biochem. Funct._ 22, 343–352 (2004). Article  CAS  PubMed  Google Scholar  * Gamcsik, M. P., Kasibhatla, M. S., Teeter, S. D.


& Colvin, O. M. Glutathione levels in human tumors. _Biomarkers_ 17, 671–691 (2012). Article  CAS  PubMed  PubMed Central  Google Scholar  * Russo, A., DeGraff, W., Friedman, N. &


Mitchell, J. B. Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs. _Cancer Res._ 46, 2845–2848 (1986).


CAS  PubMed  Google Scholar  * Giustarini, D. et al. Glutathione, glutathione disulfide and S-glutathionylated proteins in cell cultures. _Free Radical Biol. Med._ 89, 972–981 (2015).


Article  CAS  Google Scholar  * Estrela, J. M., Ortega, A. & Obrador, E. Glutathione in cancer biology and therapy. _Crit. Rev. Clin. Lab. Sci._ 43, 143–181 (2006). Article  CAS  PubMed


  Google Scholar  * Zhang, J. et al. Synthesis and characterization of a series of highly fluorogenic substrates for glutathione transferases, a general strategy. _J. Am. Chem. Soc._ 133,


14109–14119 (2011). Article  CAS  PubMed  Google Scholar  * Shibata, A. et al. Fluorogenic probes using 4-substituted-2-nitrobenzenesulfonyl derivatives as caging groups for the analysis of


human glutathione transferase catalyzed reactions. _Analyst_ 138, 7326–7330 (2013). Article  CAS  PubMed  Google Scholar  * Lee, M. H. et al. Disulfide-cleavage-triggered chemosensors and


their biological applications. _Chem. Rev._ 113, 5071–5109 (2013). Article  CAS  PubMed  Google Scholar  * Maeda, H. et al. 2,4-Dinitrobenzenesulfonyl fluoresceins as fluorescent


alternatives to Ellman’s reagent in thiol-quantification enzyme assays. _Angew. Chem. Int. Ed._ 44, 2922–2925 (2005). Article  CAS  Google Scholar  * Hansch, C., Leo, A. & Taft, R. W. A


survey of Hammett substituent constants and resonance and field parameters. _Chem. Rev._ 91, 165–195 (1991). Article  CAS  Google Scholar  * van Iersel, M. L. P. S. et al. Inhibition of


glutathione S-transferase activity in human melanoma cells by α,β-unsaturated carbonyl derivatives. Effects of acrolein, cinnamaldehyde, citral, crotonaldehyde, curcumin, ethacrynic acid and


trans-2-hexenal. _Chem. Biol. Interact._ 102, 117–132 (1996). Article  CAS  PubMed  Google Scholar  * Rahman, I., Kode, A. & Biswas, S. K. Assay for quantitative determination of


glutathione and glutathione disulfide levels using enzymatic recycling method. _Nat. Protoc._ 1, 3159–3165 (2006). Article  CAS  PubMed  Google Scholar  * Manegold, C. Gemcitabine (Gemzar®)


in non-small cell lung cancer. _Expert Rev. Anticancer Therapy_ 4, 345–360 (2004). Article  CAS  Google Scholar  * Hayashi, H., Kurata, T. & Nakagawa, K. Gemcitabine: efficacy in the


treatment of advanced stage nonsquamous non-small cell lung cancer. _Clin. Med. Insights Oncol._ 5, 177–184 (2011). Article  CAS  PubMed  PubMed Central  Google Scholar  * Toschi, L.,


Finocchiaro, G., Bartolini, S., Gioia, V. & Cappuzzo, F. Role of gemcitabine in cancer therapy. _Future Oncol._ 1, 7–17 (2005). Article  CAS  PubMed  Google Scholar  * He, M., Xuehong,


C. & Yepeng, L. Small molecular gemcitabine prodrugs for cancer therapy. _Curr. Med. Chem._ 26, 5562–5582 (2019). Google Scholar  * Ullman-Cullere, M. H. & Foltz, C. J. Body


condition scoring: a rapid and accurate method for assessing health status in mice. _Lab. Anim. Sci._ 49, 319–323 (1999). CAS  PubMed  Google Scholar  * Milovanovic, I. S., Stjepanovic, M.


& Mitrovic, D. Distribution patterns of the metastases of the lung carcinoma in relation to histological type of the primary tumor: an autopsy study. _Ann. Thorac. Med._ 12, 191–198


(2017). Article  PubMed  PubMed Central  Google Scholar  * _Glutathione (GSH) Probes_ (Ursa Bioscience, 2013); https://ursabioscience.com/technology/gsh-probes * Jiang, X. et al.


Quantitative real-time imaging of glutathione. _Nat. Commun._ 8, 16087 (2017). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zhou, H. et al. Intracellular endogenous glutathione


detection and imaging by a simple and sensitive spectroscopic off–on probe. _Analyst_ 143, 2390–2396 (2018). Article  CAS  PubMed  Google Scholar  * Guo, R. et al. GSH activated


biotin-tagged near-infrared probe for efficient cancer imaging. _Theranostics_ 9, 3515–3525 (2019). Article  CAS  PubMed  PubMed Central  Google Scholar  * Zou, Y. et al. Bioimaging of


glutathione with a two-photon fluorescent probe and its potential application for surgery guide in laryngeal cancer. _ACS Sens._ 5, 242–249 (2020). Article  CAS  PubMed  Google Scholar 


Download references ACKNOWLEDGEMENTS This work was supported by the National Institutes of Health (R35GM133581). M.Y.L acknowledges the Alfred P. Sloan Foundation for financial support.


Major funding for the 500-MHz Bruker CryoProbeTM was provided by the Roy J. Carver Charitable Trust (Muscatine, Iowa; grant no. 15-4521) to the School of Chemical Sciences NMR Lab. The Q-TOF


Ultima mass spectrometer was purchased in part with a grant from the National Science Foundation, Division of Biological Infrastructure (DBI-0100085). We also acknowledge the Core


Facilities at the Carl R. Woese Institute for Genomic Biology for access to the Zeiss LSM 700 confocal microscope and corresponding software. We also acknowledge I. Dobrucka and the


Molecular Imaging Laboratory at the Beckman Institute for use of the IVIS imaging system. M.Y.L. thanks H. Knox for initial animal training and assistance with the NanoZoomer. We thank T.


Bearrood and C. Anorma for assistance with initial confocal imaging experiments, L. Akin for aid with mass spectrometry experiments, S. Anakk and A. Dean for help with interpreting results


from H&E staining experiments, N. Herndon and J. Xu for help with generating the orthotopic lung cancer and liver metastasis models, S. Gardner for providing 4T1 tumour models, J. Sarol


and A. Kaur from Biostatistics, Epidemiology, & Research Design at the Interdisciplinary Health Sciences Institute (UIUC) for aid in statistical analysis, and A. Bennet for helpful


discussions. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Chemistry and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign,


Urbana, IL, USA Melissa Y. Lucero & Jefferson Chan Authors * Melissa Y. Lucero View author publications You can also search for this author inPubMed Google Scholar * Jefferson Chan View


author publications You can also search for this author inPubMed Google Scholar CONTRIBUTIONS M.Y.L. performed all experiments in this study that include chemical synthesis, in vitro


characterization, cellular studies, tumour model studies, in vivo imaging and sample preparation for ex vivo analysis. J.C. assisted with the blinded animal study. M.Y.L. and J.C. analysed


the data and prepared the manuscript. J.C. conceived the project, with intellectual contributions from M.Y.L. CORRESPONDING AUTHOR Correspondence to Jefferson Chan. ETHICS DECLARATIONS


COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature Chemistry_ thanks Junjie Yao, Deju Ye and the other, anonymous,


reviewer(s) for their contribution to the peer review of this work. PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional


affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Supplementary Figs. 1–34, Tables 1 and 2 and NMR spectra 2–21. REPORTING SUMMARY RIGHTS AND PERMISSIONS Reprints and


permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Lucero, M.Y., Chan, J. Photoacoustic imaging of elevated glutathione in models of lung cancer for companion diagnostic applications. _Nat.


Chem._ 13, 1248–1256 (2021). https://doi.org/10.1038/s41557-021-00804-0 Download citation * Received: 27 April 2020 * Accepted: 27 August 2021 * Published: 25 October 2021 * Issue Date:


December 2021 * DOI: https://doi.org/10.1038/s41557-021-00804-0 SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a


shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative