Stakes and expertise modulate conformity in economic choice
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN

Play all audios:

ABSTRACT The influences of expertise and group size on an individual’s tendency to align with a majority opinion have been attributed to informational and normative conformity, respectively:
Whereas the former refers to the treatment of others’ decisions as proxies for outcomes, the latter involves positive affect elicited by group membership. In this study, using a social
gambling task, we pitted alignment with a high- vs. low-expertise majority against a hypothetical monetary reward, thus relating conformity to a broader literature on valuation and choice,
and probed the countering influence of a high-expertise minority opinion. We found that the expertise of a countering minority group significantly modulated alignment with a low-expertise
majority, but only if such alignment did _not_ come at a cost. Conversely, participants’ knowledge of payoff probabilities predicted the degree of majority alignment _only_ when a
high-expertise majority endorsed a more costly option. Implications for the relative influences of expertise and stakes on conformity are discussed. SIMILAR CONTENT BEING VIEWED BY OTHERS
THE FEAR OF CONFLICT LEADS PEOPLE TO SYSTEMATICALLY AVOID POTENTIALLY VALUABLE ZERO-SUM SITUATIONS Article Open access 26 October 2022 PEOPLE CONFORM TO SOCIAL NORMS WHEN GAMBLING WITH LIVES
OR MONEY Article Open access 16 January 2023 SELF-SERVING REGRET: EXPERIMENTAL EVIDENCE FROM A RECIPROCITY GAME Article Open access 25 January 2025 INTRODUCTION Ever since Solomon Asch1
demonstrated that individuals abandon their own superior judgements to align with an obviously incorrect but unanimous group of peers, the factors that influence conformity have been
intensely studied across social sciences. Much of this work has focused on dissociating informational and normative conformity—while the former involves viewing others’ decisions as
evidence, the latter is based on a desire to belong2—particularly with respect to the relative influences of majority size and expertise3,4,5,6,7. Notably, while alignment with a majority
opinion might provide access to group resources, protect individuals from social rejection8, and even perpetuate charitable behavior9, it can also be maladaptive, as when degrading the
“wisdom of the crowd”10, or inducing individuals to make suboptimal decisions11. In this study, we used a social gambling task to pit alignment with a high- vs. low-expertise majority
against hypothetical monetary gain, and against the countering opinion of a high-expertise minority. A substantial literature has addressed the relationship between perceived
self-competence, group expertise and conformity5,6,7. For example, Costanzo et al.5 found that a subject made to believe, through experimenter-controlled feedback, that s/he was incompetent
at judging the size of a set of stimuli was more likely to conform to a group with ostensibly high expertise than a group with low expertise. Similarly, in a study assessing the perceived
nutritional value of fictitious dietary products, Lascu et al.6 found that participants’ self-assessed task competence modulated the influence of ostensible group expertise on conformity.
The interaction between self-competence and group expertise has been interpreted as evidence for informational, rather than normative, conformity12. Of course, one might argue that perceived
low self-competence leads to low self-esteem, thus enhancing the affirmational value of belonging. Moreover, membership in a group with greater expertise may confer greater perceived status
and thus greater value. In general, in the absence of any stakes (e.g., real or hypothetical economic loss), it is difficult to discern how the subjective _value_ of conforming contributes
to decision making: Specifically, is the desire to belong strong enough to warrant an apparent decision cost? Interestingly, Asch1 found that the presence of even a single dissenter,
agreeing with the subject, substantially reduced the influence of the group, and similar results have been reported in more recent work on memory conformity13; it remains unclear, however,
whether the expertise of the majority, and of the dissenting minority, modulates such effects. We predicted that, in the absence of stakes, minority expertise would be heavily weighed when
majority expertise was low; conversely, if the majority endorsed an objectively incorrect (i.e., less rewarding) option, minority expertise would have a greater influence when majority
expertise was high, since an incorrect _and_ low-expertise majority should be dismissed regardless of the expertise of the minority. Finally, we expected that an individual’s objective
competency—operationalized as the accuracy of reward probability estimates—would predict the tendency to align with high, but not with low, expertise. METHODS PARTICIPANTS Thirty-seven
undergraduates at the University of California, Irvine (32 females, mean age = 21.2 \(\pm\) 3.2) completed the study for course credit. Our primary hypothesis was that the influence of
minority expertise on conformity would depend both on the expertise of the majority, and on whether majority alignment came at a cost. Using a small independent sample (n = 14), we
calculated the three-way interaction score (i.e., the difference in conformity between high and low minority expertise, given high vs. low majority expertise, when conformity came at cost
vs. when reward probabilities were equal), and obtained an effect size (partial eta squared; \({\eta }_{p}^{2}\)) of 0.50. An a priori power analysis in G*Power (3.1.9.2;14) yielded a
required sample size of 34 to achieve an 0.8 power to detect this interaction effect at an alpha of 0.05. Our target sample size was 40, however, our actual sample size of 37 fell just
short, due to a covid lockdown-induced suspension of research operations. All participants gave informed consent and the Institutional Review Board of the University of California, Irvine,
approved the study. All aspects of the study conformed to the guidelines of the 2013 WMA Declaration of Helsinki. TASK AND PROCEDURE The study used a version of the social gambling task
first introduced by Mistry & Liljeholm11, in which each of six numbered slots on a game board yielded a 10¢ reward with some probability. Participants were instructed at the beginning of
the study that all monetary rewards were fictitious but should be treated as real. They were further told that, while they would receive initial training on the probabilities with which
each slot yielded the 10¢ reward, they would not be told about any monetary outcomes during the actual gambling phase. They would, however, have access to decisions made by a group of
“previous gamblers” given the same slot options, before making their choice on each gambling trial. The group of previous gamblers was stated to have been drawn from a cohort of students
participating in the study during the previous academic quarter, and to have been labeled based on their performance in the task as high (H) vs. low (L) earners. Thus, participants made
their gambling decisions given information about the norm judgment of their peers, the expertise of those peers, and previously acquired knowledge regarding the expected monetary value of
each available option. In the first phase, participants were trained on the reward probability of each slot on the game board until they were able to rate each slot within 0.2 of its
programmed probability. To ensure equal sampling, each slot was highlighted on 10 consecutive trials indicating its availability. Once the participant selected the slot, an image of 10¢ or a
red “X” graphic was superimposed on the slot (see Fig. 1), with relative frequencies corresponding to the probability with which the slot produced the 10¢ reward. Following 10 trials with a
particular slot, the participant had to rate the reward probability for that slot within 0.2 of the programmed probability, or else the 10 trials were repeated. After receiving training on,
and successfully rating, each slot option, participants were presented with each of the slots in random order, and again had to rate the reward probability of each slot within 0.2 of its
programmed probability; if the rating of any one slot was not within 0.2 of its programmed probability, they were required to repeat the entire training phase. At the end of the experiment,
to assess retention, participants again rated the probability of the 10¢ reward for each slot. On each trial in the subsequent gambling phase, illustrated in Fig. 2, participants chose
between two available slot options, highlighted on the board and indicated by corresponding numbers printed on the top left and right sides of the screen. A panel of gray icons aligned
beneath available options indicated the decisions of 16 ostensible previous gamblers given the same choice. Each previous gambler was labeled with an H or L, to indicate high and low
previous earnings (henceforth expertise), respectively. Once a participant pressed a key to indicate selection of an available slot, the participant’s avatar, displayed at the top center of
the screen at the onset of the trial, moved below the chosen option to align with the previous gamblers already displayed beneath that option. Participants were instructed that monetary
earnings would not be revealed until the end of the experiment, but that they should assume that all monetary outcomes were consistent with the reward probabilities established in the
initial training phase. This was done to avoid additional learning about monetary rewards during the gambling phase. A flow chart of variables, levels, and their combination into 12 unique
conditions is presented in Fig. 3. First, the two available gambling options on a given trial could have equal or different reward probabilities (two of the six game board slots had a 0.2
probability of reward, two had a 0.5 probability of reward, and two had a 0.8 probability of reward, yielding no difference, a small (0.3) difference, or a large (0.6) difference). Second,
previous players could be equally or unequally distributed across the two gambling options—when unequal, the majority (a 0.63 to 0.75 proportion of the total number of 16 previous gamblers)
could endorsed the option with a greater, lesser, or equal reward probability. Finally, the proportion of expertise, either high (0.83–1.0) or low (0.18–0.25), among previous gamblers could
be the same or differ across gambling options. Differences within levels (e.g., a 0.3 vs. 0.6 difference in reward probabilities, or a 0.83 vs. 1.0 high proportions of expertise) were
included to simulate plausible variance but were not distinguished in the grouping of levels into conditions, which only reflected categorical differences (e.g., different vs. identical
reward probabilities or a high vs. low proportion of experts). Specifically, these variables and their levels were combined, as illustrated in Fig. 3, into 14 unique within-subject
conditions. In addition to those listed in Table 1, there were two conditions for which the reward probability differed across options, while previous players were equally split, and a high
expertise proportion was associated with either the greater (6 trials) or lesser (6 trials) reward probability. The combination for which reward probabilities, numbers of previous gamblers,
_and_ proportions of expertise were all the same across options, yielding identical alternatives, was not included in the study. Note that the full design includes conditions in which the
majority selected the gambling option with a greater reward probability—although these are less informative, since both payoffs and conformity indicate the same option, and therefore not
part of our primary hypothesis, they were nevertheless included to assess the influence of minority expertise, as well as for plausibility (it would seem highly unlikely that the greater
reward option was never selected by a majority of previous gamblers). To avoid easily discernible patterns reflecting experimental manipulations, natural variance was induced by randomly
drawing the trials from the 12 conditions listed in Table 1, with the constraint that there must be at least 1 and at most 7 trials in each. As a results, while each participant received a
total of 60 gambling trials, the relative number of trials from each condition differed across participants. The resulting mean number of trials in each condition, averaged across
participants, is shown, with standard deviations, in the 5th column of Table 1. The order of trials was randomized. The measure of primary interest was the proportion of trials on which
participants choose the option endorsed by the majority of ostensible previous gamblers. We predicted that the influence of minority expertise would be particularly pronounced when a
high-expertise majority endorsed the incorrect (lower reward) option—i.e., when majority expertise and objective reward probabilities were most clearly at odds. At the conclusion of the
gambling phase, participants again rated the reward probability for each slot on the gambling board, presented once in random order—the accuracy (i.e., mean deviation from programmed
probabilities) of these ratings for each participant was used as a measure of objective competency. Finally, at the end of the study, participants filled out the Rosenberg Self-Esteem
Scale—a well-validated, 10-item, global self-worth assessment tool ranging from 0 (low self-esteem) to 40 (high self-esteem)15. We hypothesized that, when majority alignment came at a cost,
objective competence and global self-esteem would both predict conformity, reflecting informational and normative incentives, respectively. DEBRIEFING Immediately upon completing the
experiment, participants were informed that the decisions made by “previous gamblers” had in fact been generated by a computer algorithm. They were then given the option to withdraw their
data from the study in light of this new information. All participants gave written consent to having their data included in the study after learning of the deception. RESULTS Mean objective
competence and self-esteem scores were 0.06 \(\pm\) 0.10 and 29.02 \(\pm\) 4.21, respectively. The proportion of trials on which participants conformed (i.e., chose the option endorsed by
the majority of ostensible previous gamblers), across conditions defined by (1) whether the majority-endorsed option had a lower, equal or greater probability of a hypothetical monetary
reward relative to the alternative option, (2) whether the expertise of the majority was high or low, and (3) whether the expertise of the minority was high or low, is plotted in Fig. 4.
Note, again, that while our primary hypothesis concerns the influences of majority and minority expertise on conformity that comes at a cost relative to no cost, scenarios in which
conformity led to a gain were included for completeness, in Fig. 4 as well as in the analyses detailed below. A three-way repeated measures analysis of variance (ANOVA), with Stakes,
Majority Expertise and Minority Expertise as within-subjects variables, was performed on the data. As predicted, there was a three-way interaction between Stakes, Majority Expertise and
Minority Expertise, F(2,72) = 3.76, _p_ = 0.03, \({\eta }_{p}^{2}\)=0.10. Post hoc pairwise comparisons, using FDR correction, revealed that the difference between high and low minority
expertise was significantly smaller when majority expertise was low than when it was high was in the Cost condition [t(36) = 2.39, adjusted _p__FDR_ = 0.035)] while a non-significant (p =
0.18) trend in the _opposite_ direction, such that the difference between high and low minority expertise was smaller when majority expertise was high than when it was low, was observed in
the Neutral condition. A significant influence of minority expertise on conformity was found for all comparisons (all adjusted _p__FDR_ < 0.05) except those in which the majority endorsed
the gambling option with the greater reward probability _and_ majority expertise was high (p = 0.382). The ANOVA also yielded significant two-way interactions between Stakes and Majority
Expertise, (F(2,72) = 3.28, _p_ = 0.043, \({\eta }_{p}^{2}\)=0.08), Stakes and Minority Expertise, (F(2,72) = 3.82, _p_ = 0.027, \({\eta }_{p}^{2}\)=0.1), and Minority and Majority
Expertise, (F(1,36) = 5.06, _p_ = 0.031, \({\eta }_{p}^{2}\)=0.12), as well as main effects of Stakes (F(2,72) = 48.09, _p_ < 0.001, \({\eta }_{p}^{2}\)=0.57), Majority expertise (F(1,36)
= 44.211, _p_ < 0.001, \({\eta }_{p}^{2}\)=0.55), and Minority Expertise (F(1,36) = 32.11, _p_ < 0.001, \({\eta }_{p}^{2}\)=0.47). Recall that the number of trials in each condition,
generated by a combination of the levels of our independent variables, was drawn randomly from a uniform distribution with bounds 1 and 7, for each participant. The mean number of trials in
each condition is listed, with standard deviations, in Table 1. To ensure that differences between conditions in the degree of conformity did not reflect the number of trials per condition,
an ANOVA was performed on the number of trials, rather than the proportion of conforming decisions, in each condition, for each participant. There were no significant main effects or
interactions involving the relative number of trials across conditions (all _p’s_ > = 0.15), ruling this factor out as the source of our effects. Next, to assess whether the tendency to
conform at a cost varied, across participants, with levels of objective competence (i.e., the accuracy of post-gambling reward probability ratings) and self-esteem, we computed the Pearson
correlation coefficient between these variables and each of the four conditions in which the majority endorsed the gambling option with the lower reward probability. The only effects that
survived FDR correction for multiple comparisons were the correlations between objective competency and conformity to a high-expertise but incorrect majority, whether countered by a
high-expertise minority (_r_ = − 0.56, adjusted _p__FDR_ = 0.003) or a low expertise minority (_r_ = − 0.44, adjusted _p__FDR_ = 0.024). Specifically, the greater the objective competence,
the less likely a participant was to conform to an incorrect majority made up primarily of experts. In addition to the hypothesis-driven correlation analyses, we assessed the relationship
between order of participation and conformity, for each of the 12 experimental conditions included in the ANOVA. This was done to gauge whether susceptibility to the deception decreased over
time, given that participation in the study spanned a three-month period, providing ample time for subjects to disclose the deception to subsequent participants (despite instructions not to
do so). While none of these correlations survived correction for multiple comparison, uncorrected p-values suggested that, when both gambling options had the same reward probabilities, and
the minority expertise was high, a later order of participation increased conformity to a high-expertise majority (uncorrected p = 0.012, r = 0.41) but _decreased_ conformity to a
low-expertise majority (uncorrected p = 0.045, r = − 0.33). We consider it unlikely that these highly selective, and uncorrected, effects reflect a general decrease in the efficacy of the
deception over time. Finally, at a reviewer’s request, a post hoc power analysis was performed on the interaction score used for our a priori power calculation (i.e., the difference in
conformity between high and low minority expertise, given high vs. low majority expertise, when conformity came at cost vs. when reward probabilities were equal). This contrast yielded an
effect size of 0.42, with an observed power of 0.7 for our sample of 37 participants. Note that this post hoc estimate of power far exceed levels associated with sign (Type S) and magnitude
(Type M) errors16. When combining our small pilot sample with our main sample, for a total sample size of 51, the interaction score yielded an effect size of 0.46, with an observed power of
0.9. DISCUSSION The increased tendency toward group alignment with increased group expertise is often attributed to an informational treatment of others’ decisions as proxies for decision
outcomes. Here, using a simple gambling task with hypothetical monetary rewards, we assessed how the expertise of a group majority might interact with decision stakes, and with the expertise
of a countering minority group. We found that the difference in conformity across high vs. low minority expertise was greater when majority expertise was low than when majority expertise
was high, but only if conformity did _not_ come at a cost. Specifically, when conformity with a low-expertise majority _did_ come at a cost, it was extremely unlikely, regardless of the
expertise of the countering minority. We also found that, when the decision to conform came at a cost and majority expertise was high, conformity was significantly predicted by lower
objective competence, defined as accuracy of post-gambling reward probability ratings, regardless of the level of minority expertise. An important caveat for interpreting these results is
the fact that our sample was made up almost exclusively (~ 87%) of females. Although some evidence suggests that women show slightly greater levels of conformity than males (See17 for a
meta-analysis), results on the role of gender in conformity are mixed. For example, using a perceptual judgment task in which subjects estimated the number of dots on the screen, with a high
or low, male or female, expert confederate, Crano7 found no main effect of the gender of the participant, but did find that this variable interacted with the gender of the confederate (such
that conformity was greater when the participant and confederate had the same gender). More recently, Wijenayake et al.18 probed the effects of gender on conformity using an online quiz, in
which, for each multiple-choice question, participants were given the opportunity to revise their answer after seeing that they had selected an option chosen by either a majority or
minority of ostensible previous, male or female, respondents. They found no significant gender difference in conformity but did find that both men and women typically conformed more to a
majority with a large proportion of males for questions perceived as stereotypically male, and to a majority with a large proportion of females for questions perceived as stereotypically
female, suggesting that gender biases reflect assumptions about expertise. Further research is needed to assess whether the interactions between stakes and majority and minority expertise,
reported here, can be generalized across genders. Other limitations also constrain the interpretation of our findings. Most notably, we used hypothetical monetary outcomes. While the use of
fictitious money is prevalent throughout the decision sciences, with direct comparisons showing equivalence to real monetary rewards at both behavioral and neural levels19,20,21,22, and
while our results clearly demonstrate the incentive of hypothetical rewards, with conformity dramatically increasing across a loss vs. gain of fictitious money, it is nonetheless important
to confirm generalizability to real money in future studies. Another limitation is the use of fictitious, and graphically represented, ostensible others. Again, such methods are pervasive in
research on both informational12 and normative23,24 conformity, but it is reasonable to assume that group pressures are diminished relative to real-world interactions. A final concern
relates to the use of objective competence and the Rosenberg self-esteem scale as predictors of conformity, as these were likely insufficient to gauge confidence in oneself, and in one’s
knowledge of reward probabilities. In particular, even those participants who demonstrated high accuracy in post-gambling probability ratings might have experienced high levels of
uncertainty about objective reward probabilities when confronted with an inaccurate high-expertise majority. Future studies will be aimed at identifying transient changes in confidence about
decision outcomes. Several previous studies have shown that conformity increases with perceived group expertise7,25,26 and, further, that this influence is modulated by perceived
self-competence5,6. Often, the interaction between self-competence and group expertise has been argued to reflect an informational basis for conformity—the less knowledgeable you are, and
the more informed the apparent judgements of others, the more likely you are to treat those others’ judgments as objective evidence12,18. Many aspects of our results are consistent with this
characterization of social influence. First, we found that majority alignment increased with majority expertise and decreased with the expertise of a countering minority. The significant
influence of an expert vs. non-expert minority endorsing a different option than the majority is, to our knowledge, a novel finding. Second, objective competence—defined as the accuracy of
post-gambling estimates of slot reward probabilities—significantly predicted majority alignment _only_ when majority expertise was high, and conformity came at a cost. In other words, the
poorer a participant’s knowledge of the objective reward probabilities, the more likely that participant was to align with an _incorrect_ majority decision, but only if the majority was made
up primarily of experts. The modulating influence of objective competence on deference to high, but not low, majority expertise is entirely consistent with an informational basis of
conformity. On the other hand, some of the obtained effects are difficult to reconcile with a purely informational basis for majority alignment. For example, while it is not surprising that
conformity is reduced when it comes at an objective cost, it is not clear why, if conformity reflects the treatment of others’ decisions as evidence, such evidence should be weighed _less_
heavily when conformity comes at a cost? Indeed, in order to selectively reject the advice of the majority when conforming comes at a cost, one must _know_ that conformity comes at a cost,
suggesting that the informational gain is redundant. Likewise, the reduced influence of minority expertise specifically when alignment with a low-expertise majority came at a cost suggests
that conformity costs differentially modulate the perceived validity of evidence provided by a high- vs. low-expertise minority. Finally, recall that objective competence _only_ predicted
the degree of high-expertise majority alignment when such conformity came at a cost: This suggests that, when majority alignment is economically inconsequential, conformity may be primarily
driven by the subjective value of belonging to a group. We suggest that this normative influence on conformity is in competition with informational factors, and thus overshadowed by salient
differences in cost and expertise across options. Further work is needed to dissociate the relative contributions of decision cost, objective competence, and perceived majority and minority
expertise to conformity in economic choice. In summary, we used a gambling task to assess the influences of a dissenting minority, proportion of experts, and decision cost on the tendency to
align with a majority decision. We found that the influence of minority expertise was greatest when majority expertise was low and reward probabilities were the same across gambling
options. Moreover, participants’ knowledge of objective reward probabilities only predicted majority alignment when a high-expert majority endorsed the gambling option with the lower reward
probability. While further research is needed to determine the generality of these findings, particularly with respect to the use of hypothetical money and graphically represented ostensible
others, the results provide a novel contribution to a growing literature on cognitive and motivational determinants of social conformity. REFERENCES * Asch, S. E. Opinions and social
pressure. _Sci. Am._ 193(5), 31–35 (1955). Article ADS Google Scholar * Deutsch, M. & Gerard, H. B. A study of normative and informational social influences upon individual judgment.
_Psychol. Sci. Public Interest_ 51(3), 629–636. https://doi.org/10.1037/h0046408 (1955). Article CAS Google Scholar * Bond, R. Group size and conformity. _Group Process. Intergroup
Relat._ 8(4), 331–354 (2005). Article Google Scholar * Williamson, P., Weber, N. & Robertson, M. T. The effect of expertise on memory conformity: A test of informational influence.
_Behav. Sci. Law_ 31(5), 607–623 (2013). Article Google Scholar * Costanzo, P. R., Reitan, H. T. & Shaw, M. E. Conformity as a function of experimentally induced minority and majority
competence. _Psychon. Sci._ 10(10), 329–330. https://doi.org/10.3758/BF03331545 (1968). Article Google Scholar * Lascu, D.-N., Bearden, W. O. & Rose, R. L. Norm extremity and
interpersonal influences on consumer conformity. _Interpers. Buyer Behav. Market._ 32(3), 201–212. https://doi.org/10.1016/0148-2963(94)00046-H (1995). Article Google Scholar * Crano, W.
D. Effects of sex, response order, and expertise in conformity: A dispositional approach. _Sociometry_ 33(3), 239–252. https://doi.org/10.2307/2786155 (1970). Article Google Scholar *
Williams, K. D., Cheung, C. K. & Choi, W. Cyberostracism: Effects of being ignored over the Internet. _J. Pers. Soc. Psychol._ 79(5), 748 (2000). Article CAS Google Scholar * Sasaki,
S. Majority size and conformity behavior in charitable giving: Field evidence from a donation-based crowdfunding platform in Japan. _J. Econ. Psychol._ 70, 36–51 (2019). Article Google
Scholar * Lorenz, J., Rauhut, H., Schweitzer, F. & Helbing, D. How social influence can undermine the wisdom of crowd effect. _Proc. Natl. Acad. Sci. USA_ 108(22), 9020–9025 (2011).
Article ADS CAS Google Scholar * Mistry, P. & Liljeholm, M. the expression and transfer of Valence Associated with social Conformity. _Sci. Rep._ 9(1), 1–12 (2019). Google Scholar *
Rios, K., Goldberg, M. H. & Totton, R. R. An informational influence perspective on (non) conformity: Perceived knowledgeability increases expression of minority opinions. _Commun.
Res._ 45(2), 241–260. https://doi.org/10.1177/0093650217699935 (2017). Article Google Scholar * Walther, E. _et al._ Conformity effects in memory as a function of group size, dissenters
and uncertainty. _Appl. Cogn. Psychol._ 16(7), 793–810 (2002). Article Google Scholar * Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: A flexible statistical power
analysis program for the social, behavioral, and biomedical sciences. _Behav. Res. Methods_ 39, 175–191 (2007). Article Google Scholar * Rosenberg, M. _Society and the Adolescent
Self-image_ (Princeton University Press, 1965). Book Google Scholar * Gelman, A. & Carlin, J. Beyond power calculations: Assessing type S (sign) and type M (magnitude) errors.
_Perspect. Psychol. Sci._ 9(6), 641–651 (2014). Article Google Scholar * Bond, R. & Smith, P. B. Culture and conformity: A meta-analysis of studies using Asch’s (1952b, 1956) line
judgment task. _Psychol. Bull._ 119(1), 111 (1996). Article Google Scholar * Wijenayake, S., van Berkel, N., Kostakos, V. & Goncalves, J. Impact of contextual and personal determinants
on online social conformity. _Comput. Hum. Behav._ 108, 106302. https://doi.org/10.1016/j.chb.2020.106302 (2020). Article Google Scholar * Smith, V. L. & Walker, J. M. Monetary
rewards and decision cost in experimental economics. _Econ. Inq._ 31, 245–261 (1993). Article Google Scholar * Kühberger, A., Schulte-Mecklenbeck, M. & Perner, J. Framing decisions:
Hypothetical and real. _Organ. Behav. Hum. Dec._ 89, 1162–1175 (2002). Article Google Scholar * Johnson, M. W. & Bickel, W. K. Within-subject comparison of real and hypothetical money
rewards in delay discounting. _J. Exp. Anal. Behav._ 77, 129–146 (2002). Article Google Scholar * Madden, G. J., Begotka, A. M., Raiff, B. R. & Kastern, L. L. Delay discounting of real
and hypothetical rewards. _Exp. Clin. Psychopharm._ 11, 139 (2003). Article Google Scholar * Nook, E. C. & Zaki, J. Social norms shift behavioural and neural responses to foods. _J.
Cogn. Neurosci._ 7, 1412–1426. https://doi.org/10.1162/jocn_a_00795 (2015). Article Google Scholar * Zaki, J., Schirmer, J. & Mitchell, J. P. Social influence modulates the neural
computation of value. _Psychol. Sci._ 22(7), 894–900 (2011). Article Google Scholar * Skagerberg, E. M. & Wright, D. B. Susceptibility to postidentification feedback is affected by
source credibility. _Appl. Cogn. Psychol._ 23(4), 506–523. https://doi.org/10.1002/acp.1470 (2009). Article Google Scholar * Gabbert, F., Memon, A. & Wright, D. I saw it for longer
than you: The relationship between perceived encoding duration and memory conformity. _Acta Physiol. (Oxf)_ 124, 319–331. https://doi.org/10.1016/j.actpsy.2006.03.009 (2007). Article Google
Scholar Download references ACKNOWLEDGEMENTS This work was supported by a grant from the National Science Foundation (1844632) awarded to M.L. The authors thank Garrett Mauter for
assistance with data acquisition. FUNDING Funding was funded by National Science Foundation (Grant no. 1844632). AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * Department of Cognitive
Sciences, University of California, Irvine, Irvine, USA Jordanne Greenberg & Mimi Liljeholm * Center for the Neurobiology of Learning & Memory, University of California, Irvine,
Irvine, USA Mimi Liljeholm * Department of Cognitive Sciences, 2312 Social and Behavioral Sciences Gateway, University of California, Irvine, Irvine, CA, 92697-5100, USA Mimi Liljeholm
Authors * Jordanne Greenberg View author publications You can also search for this author inPubMed Google Scholar * Mimi Liljeholm View author publications You can also search for this
author inPubMed Google Scholar CONTRIBUTIONS M.L. designed the study; J.G. implemented the study and acquired and analyzed the data under the supervision of M.L.; J.G. and M.L. wrote the
paper. CORRESPONDING AUTHOR Correspondence to Mimi Liljeholm. ETHICS DECLARATIONS COMPETING INTERESTS The authors declare no competing interests. ADDITIONAL INFORMATION PUBLISHER'S NOTE
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. RIGHTS AND PERMISSIONS OPEN ACCESS This article is licensed under a
Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of
this licence, visit http://creativecommons.org/licenses/by/4.0/. Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Greenberg, J., Liljeholm, M. Stakes and expertise modulate
conformity in economic choice. _Sci Rep_ 11, 23369 (2021). https://doi.org/10.1038/s41598-021-02793-z Download citation * Received: 27 April 2021 * Accepted: 22 November 2021 * Published: 03
December 2021 * DOI: https://doi.org/10.1038/s41598-021-02793-z SHARE THIS ARTICLE Anyone you share the following link with will be able to read this content: Get shareable link Sorry, a
shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt content-sharing initiative