Crustal magmatic controls on the formation of porphyry copper deposits
- Select a language for the TTS:
- UK English Female
- UK English Male
- US English Female
- US English Male
- Australian Female
- Australian Male
- Language selected: (auto detect) - EN

Play all audios:

ABSTRACT Porphyry deposits are large, low-grade metal ore bodies that are formed from hydrothermal fluids derived from an underlying magma reservoir. They are important as major sources of
critical metals for industry and society, such as copper and gold. However, the magmatic and redox processes required to form economic-grade porphyry deposits remain poorly understood. In
this Review, we discuss advances in understanding crustal magmatic conditions that favour the formation of porphyry Cu deposits at subduction zones. Chalcophile metal fertility of
mantle-derived arc magmas is primarily modulated by the amount and nature of residual sulfide phases in the mantle wedge during partial melting. Crustal thickness influences the longevity of
lower crustal magma reservoirs and the sulfide saturation history. For example, in thick crust, prolonged magma activity with hydrous and oxidized evolving magmas increases ore potential,
whereas thin crust favours high chalcophile element fertility, owing to late sulfide saturation. A shallow depth (<7 km) of fluid exsolution might play a role in increasing Au
precipitation efficiency, as immiscible sulfide melts act as a transient storage of chalcophile metals and liberate them to ore fluids. Future studies should aim to identify the predominant
sulfide phases in felsic systems to determine their influence on the behaviour of chalcophile elements during magma differentiation. KEY POINTS * Prolonged injection of hydrous basaltic
magmas and accumulation of andesitic magmas in the mid to lower crust are prerequisites to forming large porphyry deposits because these processes are required to maintain a long-lived
magmatic system and associated hydrothermal activity in the shallow crust. * Crustal thickness influences the duration and volume of magma activity, timing of sulfide saturation, chalcophile
element fertility and emplacement depth of porphyry intrusions. * Thick crusts (>40 km) increase porphyry Cu ore potential by producing voluminous and hydrous magmas in long-lived (≥2–3
Ma) mid to lower crustal magma reservoirs at ∼30–70 km depth, which can result in the formation of supergiant to giant porphyry Cu deposits if a combination of other ore-forming conditions
is fulfilled. * In thin crust (<40 km), late sulfide saturation and high chalcophile element fertility in shallow magma reservoirs (∼5–15 km depth) increase Au-rich porphyry Cu ore
potential. * Immiscible sulfide melts can act as temporary metal storage locations when the sulfide melts and exsolved fluids interact in shallow magma reservoirs. * Depth of porphyry
emplacement (∼1–7 km), magma alkalinity and Au fertility control Au endowments in porphyry Cu deposits Access through your institution Buy or subscribe This is a preview of subscription
content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access
subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more
Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:
* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS A RAPID CHANGE IN MAGMA PLUMBING TAPS PORPHYRY COPPER
DEPOSIT-FORMING MAGMAS Article Open access 14 October 2022 PORPHYRY COPPER FORMATION DRIVEN BY WATER-FLUXED CRUSTAL MELTING DURING FLAT-SLAB SUBDUCTION Article Open access 04 November 2024
SULFUR AND CHLORINE BUDGETS CONTROL THE ORE FERTILITY OF ARC MAGMAS Article Open access 21 July 2022 REFERENCES * Arndt, N. T. et al. Future global mineral resources. _Geochem. Perspect.
Lett._ 6, 1–2 (2017). Google Scholar * Schipper, B. W. et al. Estimating global copper demand until 2100 with regression and stock dynamics. _Resour. Conserv. Recycl._ 132, 28–36 (2018).
Article Google Scholar * Sillitoe, R. H. Porphyry copper systems. _Econ. Geol._ 105, 3–41 (2010). Article Google Scholar * Chiaradia, M. Gold endowments of porphyry deposits controlled
by precipitation efficiency. _Nat. Commun._ 11, 248 (2020). REVEALED DIFFERENT AU PRECIPITATION EFFICIENCIES BETWEEN AU-RICH AND AU-POOR PORPHYRY CU DEPOSITS AND SUGGESTED A LINK BETWEEN
EMPLACEMENT DEPTH AND AU ENDOWMENT. Article Google Scholar * Lee, C. T. A. & Tang, M. How to make porphyry copper deposits. _Earth Planet. Sci. Lett._ 529, 115868 (2020). PROPOSED THAT
AUTO-OXIDATION BY GARNET FRACTIONATION IN THICK ARCS CAN HAVE IMPORTANT EFFECTS ON THE FORMATION OF PORPHYRY CU DEPOSITS. Article Google Scholar * Richards, J. P. The oxidation state, and
sulfur and Cu contents of arc magmas: implications for metallogeny. _Lithos_ 233, 27–45 (2015). Article Google Scholar * Chiaradia, M. Copper enrichment in arc magmas controlled by
overriding plate thickness. _Nat. Geosci._ 7, 43–46 (2014). Article Google Scholar * Loucks, R. R. Distinctive composition of copper-ore-forming arc magmas. _Aust. J. Earth Sci._ 61, 5–16
(2014). Article Google Scholar * Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. _J. Petrol._ 47, 505–539 (2005).
PIONEERING STUDY THAT PROVIDED A MODEL, BASED ON EXPERIMENTAL DATA AND NUMERICAL MODELLING, FOR THE FORMATION OF HYDROUS INTERMEDIATE AND SILICIC MAGMAS IN THE LOWER CRUSTAL MAGMA RESERVOIR
IN SUBDUCTION ZONES. Article Google Scholar * Chelle-Michou, C., Rottier, B., Caricchi, L. & Simpson, G. Tempo of magma degassing and the genesis of porphyry copper deposits. _Sci.
Rep._ 7, 40566 (2017). Article Google Scholar * Chiaradia, M. & Caricchi, L. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment. _Sci. Rep._ 7, 44523
(2017). REVEALED THE IMPORTANCE OF PROLONGED MAGMA ACCUMULATION AND EVOLUTION IN THE LOWER CRUSTAL RESERVOIR, GENERATING LARGE AMOUNTS OF HYDROUS ANDESITIC MAGMA THAT CONTAINS ENOUGH WATER
TO DELIVER LARGE AMOUNTS OF CU AND AU IN PORPHYRY DEPOSITS. Article Google Scholar * Blundy, J., Mavrogenes, J., Tattitch, B., Sparks, S. & Gilmer, A. Generation of porphyry copper
deposits by gas–brine reaction in volcanic arcs. _Nat. Geosci._ 8, 235–240 (2015). Article Google Scholar * Henley, R. W. et al. Porphyry copper deposit formation by sub-volcanic sulphur
dioxide flux and chemisorption. _Nat. Geosci._ 8, 210–215 (2015). Article Google Scholar * Li, Y. et al. An essential role for sulfur in sulfide-silicate melt partitioning of gold and
magmatic gold transport at subduction settings. _Earth Planet. Sci. Lett._ 528, 115850 (2019). Article Google Scholar * Matjuschkin, V., Blundy, J. D. & Brooker, R. A. The effect of
pressure on sulphur speciation in mid- to deep-crustal arc magmas and implications for the formation of porphyry copper deposits. _Contrib. Mineral. Petrol._ 171, 66 (2016). Article Google
Scholar * Mungall, J. E., Brenan, J. M., Godel, B., Barnes, S. J. & Gaillard, F. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles. _Nat.
Geosci._ 8, 216–219 (2015). FIRST EXPERIMENTAL STUDY TO DEMONSTRATE A MECHANISM FOR SULFUR AND METAL TRANSFER FROM SULFIDE MELT TO MAGMATIC VAPOUR. Article Google Scholar * Cocker, H. A.,
Valente, D. L., Park, J. W. & Campbell, I. H. Using platinum group elements to identify sulfide saturation in a porphyry Cu system: the El Abra porphyry Cu deposit, Northern Chile. _J.
Petrol._ 56, 2491–2514 (2015). Article Google Scholar * Park, J. W. et al. Chalcophile element fertility and the formation of porphyry Cu ± Au deposits. _Miner. Deposita_ 54, 657–670
(2019). FOUND THE CORRELATION BETWEEN CHALCOPHILE ELEMENT FERTILITY AND PORPHYRY ORE TYPE (CU-AU VERSUS CU VERSUS BARREN) USING A PLATINUM GROUP ELEMENT AS A CHALCOPHILE ELEMENT FERTILITY
INDICATOR. Article Google Scholar * Richards, J. P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. _Econ. Geol. Bull. Soc._ 98, 1515–1533 (2003). Article Google
Scholar * Wilkinson, J. J. Triggers for the formation of porphyry ore deposits in magmatic arcs. _Nat. Geosci._ 6, 917–925 (2013). Article Google Scholar * Cooke, D. R., Hollings, P.
& Walsh, J. L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. _Econ. Geol._ 100, 801–818 (2005). Article Google Scholar * Burnham, C. W. in
_Geochemistry of Hydrothermal Ore Deposits_ (ed. Barnes, H. L.) 71–136 (Wiley, 1979). * Sillitoe, R. Some metallogenic features of gold and copper deposits related to alkaline rocks and
consequences for exploration. _Miner. Deposita_ 37, 4–13 (2002). Article Google Scholar * Audétat, A., Simon, A. C., Hedenquist, J. W., Harris, M. & Camus, F. in _Geology and Genesis
of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe_ Vol. 16 (Society of Economic Geologists, 2012). * Candela, P. A. et al. in _One Hundredth Anniversary
Volume_ (Society of Economic Geologists, 2005). * Hedenquist, J. W. & Lowenstern, J. B. The role of magmas in the formation of hydrothermal ore-deposits. _Nature_ 370, 519–527 (1994).
Article Google Scholar * Richards, J. P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. _Ore Geol. Rev._ 40, 1–26 (2011). Article Google Scholar * Richards, J.
P. Giant ore deposits formed by optimal alignments and combinations of geological processes. _Nat. Geosci._ 6, 911–916 (2013). Article Google Scholar * Seedorff, E. et al. in _Economic
Geology and the Bulletin of the Society. One Hundredth Anniversary Volume_ (eds Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P.) 251–298 (Society of Economic
Geologists, 2005). * Botcharnikov, R. E. et al. Behavior of gold in a magma at sulfide-sulfate transition: Revisited. _Am. Mineral._ 98, 1459–1464 (2013). Article Google Scholar * Kiseeva,
E. S., Fonseca, R. O. C. & Smythe, D. J. Chalcophile elements and sulfides in the upper mantle. _Elements_ 13, 111–116 (2017). Article Google Scholar * McInnes, B. I. A., McBride, J.
S., Evans, N. J., Lambert, D. D. & Andrew, A. S. Osmium isotope constraints on ore metal recycling in subduction zones. _Science_ 286, 512–516 (1999). Article Google Scholar * Mungall,
J. E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. _Geology_ 30, 915–918 (2002). PROPOSED THAT HIGHLY OXIDIZING SLAB-DERIVED MELTS OR SUPERCRITICAL
FLUIDS PLAY AN ESSENTIAL ROLE IN PRODUCING CU-RICH AND AU-RICH PRIMARY MAGMAS, INCREASING PORPHYRY CU-AU ORE POTENTIAL. Article Google Scholar * Rehkämper, M. et al. Ir, Ru, Pt, and Pd in
basalts and komatiites: New constraints for the geochemical behavior of the platinum-group elements in the mantle. _Geochim. Cosmochim. Acta_ 63, 3915–3934 (1999). Article Google Scholar
* Yao, Z., Qin, K. & Mungall, J. E. Tectonic controls on Ni and Cu contents of primary mantle-derived magmas for the formation of magmatic sulfide deposits. _Am. Mineral._ 103, 1545–1567
(2018). Article Google Scholar * Candela, P. A., Brown, P. E. & Chappell, B. W. in _The Second Hutton Symposium on the Origin of Granites and Related Rocks_ Vol. 272 (Geological
Society of America, 1992). * Cline, J. S. & Bodnar, R. J. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt. _J. Geophys. Res. Solid_ 96, 8113–8126
(1991). Article Google Scholar * Richards, J. P. A shake-up in the porphyry world? _Econ. Geol._ 113, 1225–1233 (2018). Article Google Scholar * Spooner, E. T. C. Magmatic
sulphide/volatile interaction as a mechanism for producing chalcophile element enriched, Archean Au-quartz, epithermal Au-Ag and Au skarn hydrothermal ore fluids. _Ore Geol. Rev._ 7, 359–379
(1993). Article Google Scholar * Richards, J. P., Spell, T., Rameh, E., Razique, A. & Fletcher, T. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu
± Mo ± Au potential: examples from the tethyan arcs of central and eastern Iran and western Pakistan. _Econ. Geol._ 107, 295–332 (2012). Article Google Scholar * Francis, R. D. Sulfide
globules in mid-ocean ridge basalts (MORB), and the effect of oxygen abundance in Fe-S-O liquids on the ability of those liquids to partition metals from MORB and komatiite magmas. _Chem.
Geol._ 85, 199–213 (1990). Article Google Scholar * Mungall, J. E. & Brenan, J. M. Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of
mantle-crust fractionation of the chalcophile elements. _Geochim. Cosmochim. Acta_ 125, 265–289 (2014). Article Google Scholar * Alard, O., Griffin, W. L., Lorand, J. P., Jackson, S. E.
& O’Reilly, S. Y. Non-chondritic distribution of the highly siderophile elements in mantle sulphides. _Nature_ 407, 891–894 (2000). Article Google Scholar * Barnes, S.-J., van
Achterbergh, E., Makovicky, E. & Li, C. Proton microprobe results for the partitioning of platinum-group elements between monosulphide solid solution and sulphide liquid. _S. Afr. J.
Geol._ 104, 275–286 (2001). Article Google Scholar * Li, C., Barnes, S. J., Makovicky, E., Rose-Hansen, J. & Makovicky, M. Partitioning of nickel, copper, iridium, rhenium, platinum,
and palladium between monosulfide solid solution and sulfide liquid: Effects of composition and temperature. _Geochim. Cosmochim. Acta_ 60, 1231–1238 (1996). Article Google Scholar *
Mungall, J. E., Andrews, D. R. A., Cabri, L. J., Sylvester, P. J. & Tubrett, M. Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide
melt under controlled oxygen and sulfur fugacities. _Geochim. Cosmochim. Acta_ 69, 4349–4360 (2005). Article Google Scholar * Du, J. & Audétat, A. Early sulfide saturation is not
detrimental to porphyry Cu-Au formation. _Geology_ 48, 519–524 (2020). Article Google Scholar * Zhang, D. & Audétat, A. What caused the formation of the giant Bingham Canyon porphyry
Cu-Mo-Au deposit? Insights from melt inclusions and magmatic sulfides. _Econ. Geol. Bull. Soc._ 112, 221–244 (2017). Article Google Scholar * Sun, W.-d et al. The link between reduced
porphyry copper deposits and oxidized magmas. _Geochim. Cosmochim. Acta_ 103, 263–275 (2013). Article Google Scholar * Kiseeva, E. S. & Wood, B. J. A simple model for chalcophile
element partitioning between sulphide and silicate liquids with geochemical applications. _Earth Planet. Sci. Lett._ 383, 68–81 (2013). Article Google Scholar * Ripley, E. M., Brophy, J.
G. & Li, C. Copper solubility in a basaltic melt and sulfide liquid/silicate melt partition coefficients of Cu and Fe. _Geochim. Cosmochim. Acta_ 66, 2791–2800 (2002). Article Google
Scholar * Zhang, Z. & Hirschmann, M. M. Experimental constraints on mantle sulfide melting up to 8 GPa. _Am. Mineral._ 101, 181–192 (2016). Article Google Scholar * Li, Y. &
Audétat, A. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. _Earth Planet. Sci.
Lett._ 355-356, 327–340 (2012). Article Google Scholar * Aulbach, S., Mungall, J. E. & Pearson, D. G. Distribution and processing of highly siderophile elements in cratonic mantle
lithosphere. _Rev. Mineral. Geochem._ 81, 239–304 (2016). Article Google Scholar * Hamlyn, P. R., Keays, R. R., Cameron, W. E., Crawford, A. J. & Waldron, H. M. Precious metals in
magnesian low-Ti lavas: Implications for metallogenesis and sulfur saturation in primary magmas. _Geochim. Cosmochim. Acta_ 49, 1797–1811 (1985). Article Google Scholar * McDonough, W. F.
& Sun, S. S. The composition of the Earth. _Chem. Geol._ 120, 223–253 (1995). Article Google Scholar * Mavrogenes, J. A. & O’Neill, H. S. C. The relative effects of pressure,
temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. _Geochim. Cosmochim. Acta_ 63, 1173–1180 (1999). Article Google Scholar * Jugo, P. J. Sulfur content at
sulfide saturation in oxidized magmas. _Geology_ 37, 415–418 (2009). Article Google Scholar * Jugo, P. J., Luth, R. W. & Richards, J. P. Experimental data on the speciation of sulfur
as a function of oxygen fugacity in basaltic melts. _Geochim. Cosmochim. Acta_ 69, 497–503 (2005). Article Google Scholar * Lee, C.-T. A. et al. The redox state of arc mantle using Zn/Fe
systematics. _Nature_ 468, 681–685 (2010). Article Google Scholar * Lee, C. T. A., Leeman, W. P., Canil, D. & Li, Z. X. A. Similar V/Sc systematics in MORB and arc basalts:
Implications for the oxygen fugacities of their mantle source regions. _J. Petrol._ 46, 2313–2336 (2005). Article Google Scholar * Lee, C. T. A. et al. Copper systematics in arc magmas and
implications for crust-mantle differentiation. _Science_ 336, 64–68 (2012). Article Google Scholar * Mallmann, G. & O’Neill, H. S. C. The crystal/melt partitioning of V during mantle
melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). _J. Petrol._ 50, 1765–1794 (2009). Article Google Scholar *
Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. _Geochem. Geophys. Geosyst._ 5, Q05B07 (2004). Article Google Scholar * Hildreth, W. & Moorbath, S. Crustal
contributions to arc magmatism in the Andes of central Chile. _Contrib. Mineral. Petrol._ 98, 455–489 (1988). Article Google Scholar * Lee, C.-T. A., Lee, T. C. & Wu, C.-T. Modeling
the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: Implications for differentiation of arc magmas. _Geochim. Cosmochim. Acta_ 143, 8–22 (2014).
PROPOSED A MODEL TO PRODUCE HYDROUS AND OXIDIZED ARC MAGMA IN THE LONG-LIVED LOWER CRUSTAL MAGMA CHAMBER IN SUBDUCTION ZONES. Article Google Scholar * Lee, C.-T. A. & Anderson, D. L.
Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle. _Sci. Bull._ 60, 1141–1156 (2015). Article Google
Scholar * Alonso-Perez, R., Müntener, O. & Ulmer, P. Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. _Contrib.
Mineral. Petrol._ 157, 541–558 (2008). Article Google Scholar * Tang, M., Erdman, M., Eldridge, G. & Lee, C.-T. A. The redox “filter” beneath magmatic orogens and the formation of
continental crust. _Sci. Adv._ 4, eaar4444 (2018). Article Google Scholar * Tang, M., Lee, C.-T. A., Costin, G. & Höfer, H. E. Recycling reduced iron at the base of magmatic orogens.
_Earth Planet. Sci. Lett._ 528, 115827 (2019). Article Google Scholar * Cox, D., Watt, S. F. L., Jenner, F. E., Hastie, A. R. & Hammond, S. J. Chalcophile element processing beneath a
continental arc stratovolcano. _Earth Planet. Sci. Lett._ 522, 1–11 (2019). Article Google Scholar * Cox, D. et al. Elevated magma fluxes deliver high-Cu magmas to the upper crust.
_Geology_ 48, 957–960 (2020). Article Google Scholar * Etschmann, B. E. et al. An _in situ_ XAS study of copper(I) transport as hydrosulfide complexes in hydrothermal solutions (25–592 °C,
180–600 bar): Speciation and solubility in vapor and liquid phases. _Geochim. Cosmochim. Acta_ 74, 4723–4739 (2010). Article Google Scholar * Pokrovski, G. S., Borisova, A. Y. &
Harrichoury, J.-C. The effect of sulfur on vapor–liquid fractionation of metals in hydrothermal systems. _Earth Planet. Sci. Lett._ 266, 345–362 (2008). Article Google Scholar * Seo, J.
H., Guillong, M. & Heinrich, C. A. The role of sulfur in the formation of magmatic–hydrothermal copper–gold deposits. _Earth Planet. Sci. Lett._ 282, 323–328 (2009). Article Google
Scholar * Seo, J. H., Guillong, M. & Heinrich, C. A. Separation of molybdenum and copper in porphyry deposits: the roles of sulfur, redox, and ph in ore mineral deposition at bingham
canyon. _Econ. Geol._ 107, 333–356 (2012). Article Google Scholar * Ballard, J. R., Palin, M. J. & Campbell, I. H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in
zircon: application to porphyry copper deposits of northern Chile. _Contrib. Mineral. Petrol._ 144, 347–364 (2002). Article Google Scholar * Hao, H. D., Campbell, I. H., Richards, J. P.,
Nakamura, E. & Sakaguchi, C. Platinum-group element geochemistry of the Escondida igneous suites, Northern chile: implications for ore formation. _J. Petrol._ 60, 487–514 (2019). Article
Google Scholar * Stern, C. R., Skewes, M. A. & Arévalo, A. Magmatic evolution of the giant El Teniente Cu–Mo deposit, central Chile. _J. Petrol._ 52, 1591–1617 (2010). Article Google
Scholar * Zimmer, M. M. et al. The role of water in generating the calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index. _J. Petrol._ 51, 2411–2444 (2010).
Article Google Scholar * Chapman, J. B., Ducea, M. N., DeCelles, P. G. & Profeta, L. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the
North American Cordillera. _Geology_ 43, 919–922 (2015). Article Google Scholar * Chiaradia, M. Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale
perspective. _Sci. Rep._ 5, 8115 (2015). Article Google Scholar * Profeta, L. et al. Quantifying crustal thickness over time in magmatic arcs. _Sci. Rep._ 5, 17786 (2015). Article Google
Scholar * Defant, M. J. & Drummond, M. S. Derivation of some modern arc magmas by melting of young subducted lithosphere. _Nature_ 347, 662–665 (1990). Article Google Scholar * Sun,
W. et al. The genetic association of adakites and Cu–Au ore deposits. _Int. Geol. Rev._ 53, 691–703 (2011). Article Google Scholar * Oyarzun, R., Márquez, A., Lillo, J., López, I. &
Rivera, S. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism. _Miner. Deposita_ 36, 794–798 (2001). Article
Google Scholar * Sajona, F. G. & Maury, R. C. Association of adakites with gold and copper mineralization in the Philippines. _C. R. Acad. Sci._ 326, 27–34 (1998). Google Scholar *
Macpherson, C. G., Dreher, S. T. & Thirlwall, M. F. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. _Earth Planet. Sci.
Lett._ 243, 581–593 (2006). Article Google Scholar * Richards, J. P. & Kerrich, R. Special paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis.
_Econ. Geol._ 102, 537–576 (2007). Article Google Scholar * Chiaradia, M., Ulianov, A., Kouzmanov, K. & Beate, B. Why large porphyry Cu deposits like high Sr/Y magmas? _Sci. Rep._ 2,
685 (2012). Article Google Scholar * Richards, J. P. High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: Just add water. _Econ. Geol._ 106, 1075–1081 (2011). Article Google Scholar
* Singer, D. A. World class base and precious metal deposits; a quantitative analysis. _Econ. Geol._ 90, 88–104 (1995). Article Google Scholar * Ariskin, A. A. et al. Modeling solubility
of Fe-Ni sulfides in basaltic magmas: the effect of nickel. _Econ. Geol._ 108, 1983–2003 (2013). Article Google Scholar * Li, C. & Ripley, E. M. Empirical equations to predict the
sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits. _Miner. Deposita_ 40, 218–230 (2005). Article Google Scholar * O’Neill, H. S. C. &
Mavrogenes, J. A. The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400 °C and 1 bar. _J. Petrol._ 43, 1049–1087 (2002). Article Google Scholar *
Park, J.-W., Campbell, I. H. & Arculus, R. J. Platinum-alloy and sulfur saturation in an arc-related basalt to rhyolite suite: Evidence from the Pual Ridge lavas, the Eastern Manus
Basin. _Geochim. Cosmochim. Acta_ 101, 76–95 (2013). Article Google Scholar * Park, J. W., Campbell, I. H., Kim, J. & Moon, J. W. The role of late sulfide saturation in the formation
of a Cu- and Au-rich magma: insights from the platinum group element geochemistry of Niuatahi–Motutahi lavas, Tonga rear arc. _J. Petrol._ 56, 59–81 (2015). Article Google Scholar *
Lowczak, J. N., Campbell, I. H., Cocker, H., Park, J. W. & Cooke, D. R. Platinum-group element geochemistry of the Forest Reef Volcanics, southeastern Australia: Implications for
porphyry Au-Cu mineralisation. _Geochim. Cosmochim. Acta_ 220, 385–406 (2018). Article Google Scholar * Hao, H., Campbell, I. H., Arculus, R. J. & Perfit, M. R. Using precious metal
probes to quantify mid-ocean ridge magmatic processes. _Earth Planet. Sci. Lett._ 553, 116603 (2021). Article Google Scholar * Chen, K. et al. Sulfide-bearing cumulates in deep continental
arcs: The missing copper reservoir. _Earth Planet. Sci. Lett._ 531, 115971 (2020). Article Google Scholar * Chin, E. J., Shimizu, K., Bybee, G. M. & Erdman, M. E. On the development
of the calc-alkaline and tholeiitic magma series: A deep crustal cumulate perspective. _Earth Planet. Sci. Lett._ 482, 277–287 (2018). Article Google Scholar * Jenner, F. E. Cumulate
causes for the low contents of sulfide-loving elements in the continental crust. _Nat. Geosci._ 10, 524–529 (2017). Article Google Scholar * Straub, S. M., Gómez-Tuena, A. & Vannucchi,
P. Subduction erosion and arc volcanism. _Nat. Rev. Earth Environ._ 1, 574–589 (2020). Article Google Scholar * Wykes, J. L., O’Neill, H. S. C. & Mavrogenes, J. A. The effect of FeO
on the sulfur content at sulfide saturation (SCSS) and the selenium content at selenide saturation of silicate melts. _J. Petrol._ 56, 1407–1424 (2015). Article Google Scholar *
Iacono-Marziano, G., Ferraina, C., Gaillard, F., Di Carlo, I. & Arndt, N. T. Assimilation of sulfate and carbonaceous rocks: Experimental study, thermodynamic modeling and application to
the Noril’sk-Talnakh region (Russia). _Ore Geol. Rev._ 90, 399–413 (2017). Article Google Scholar * Ripley, E. M. & Li, C. Sulfide saturation in mafic magmas: Is external sulfur
required for magmatic Ni-Cu-(PGE) ore genesis? _Econ. Geol._ 108, 45–58 (2013). Article Google Scholar * Tomkins, A. G., Rebryna, K. C., Weinberg, R. F. & Schaefer, B. F. Magmatic
sulfide formation by reduction of oxidized arc basalt. _J. Petrol._ 53, 1537–1567 (2012). Article Google Scholar * Core, D. P., Kesler, S. E. & Essene, E. J. Unusually Cu-rich magmas
associated with giant porphyry copper deposits: evidence from Bingham, Utah. _Geology_ 34, 41–44 (2006). Article Google Scholar * Richards, J. P. Postsubduction porphyry Cu-Au and
epithermal Au deposits: Products of remelting of subduction-modified lithosphere. _Geology_ 37, 247–250 (2009). Article Google Scholar * Karlstrom, L., Lee, C.-T. A. & Manga, M. The
role of magmatically driven lithospheric thickening on arc front migration. _Geochem. Geophys. Geosyst._ 15, 2655–2675 (2014). Article Google Scholar * Cao, M. et al. Physicochemical
processes in the magma chamber under the Black Mountain porphyry Cu-Au deposit, Philippines: Insights from mineral chemistry and implications for mineralization. _Econ. Geol._ 113, 63–82
(2018). Article Google Scholar * Dugmore, M. A., Leaman, P. W. & Philip, R. Discovery of the Mt Bini porphyry copper-gold-molybdenum deposit in the Owen Stanley Ranges, Papua New
Guinea—A geochemical case history. _J. Geochem. Explor._ 57, 89–100 (1996). Article Google Scholar * Olson, N. H., Dilles, J. H., Kent, A. J. R. & Lang, J. R. Geochemistry of the
Cretaceous Kaskanak batholith and genesis of the Pebble porphyry Cu-Au-Mo deposit, southwest Alaska. _Am. Mineral._ 102, 1597–1621 (2017). Article Google Scholar * Shinohara, H. &
Hedenquist, J. W. Constraints on magma degassing beneath the Far Southeast porphyry Cu–Au deposit, Philippines. _J. Petrol._ 38, 1741–1752 (1997). Article Google Scholar * van Dongen, M.,
Weinberg, R. F., Tomkins, A. G., Armstrong, R. A. & Woodhead, J. D. Recycling of Proterozoic crust in Pleistocene juvenile magma and rapid formation of the Ok Tedi porphyry Cu–Au
deposit, Papua New Guinea. _Lithos_ 114, 282–292 (2010). Article Google Scholar * Hao, H. D., Campbell, I. H., Park, J. W. & Cooke, D. R. Platinum-group element geochemistry used to
determine Cu and Au fertility in the Northparkes igneous suites, New South Wales, Australia. _Geochim. Cosmochim. Acta_ 216, 372–392 (2017). Article Google Scholar * Crocket, J. H., Fleet,
M. E. & S, W. E. Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basalt melt: The significance of nickel
content. _Geochim. Cosmochim. Acta_ 61, 4139–4149 (1997). Article Google Scholar * Crocket, J. H. PGE in fresh basalt, hydrothermal alteration products, and volcanic incrustations of
Kilauea volcano, Hawaii. _Geochim. Cosmochim. Acta_ 64, 1791–1807 (2000). Article Google Scholar * Park, J. W., Campbell, I. H. & Kim, J. Abundances of platinum group elements in
native sulfur condensates from the Niuatahi-Motutahi submarine volcano, Tonga rear arc: Implications for PGE mineralization in porphyry deposits. _Geochim. Cosmochim. Acta_ 174, 236–246
(2016). Article Google Scholar * Cocker, H. _Platinum Group Elements: Indicators of Sulfide Saturation in Intermediate to Felsic Magmatic Systems and Implications for Porphyry Deposit
Formation_. PhD thesis, Australian National University (2016). * Halter, W. E., Heinrich, C. A. & Pettke, T. Magma evolution and the formation of porphyry Cu–Au ore fluids: evidence from
silicate and sulfide melt inclusions. _Miner. Deposita_ 39, 845–863 (2005). Article Google Scholar * Halter, W. E., Pettke, T. & Heinrich, C. A. The origin of Cu/Au ratios in
porphyry-type ore deposits. _Science_ 296, 1844–1846 (2002). Article Google Scholar * Keith, J. D. et al. The role of magmatic sulfides and mafic alkaline magmas in the Bingham and Tintic
mining districts, Utah. _J. Petrol._ 38, 1679–1690 (1997). Article Google Scholar * Larocque, A. C. L., Stimac, J. A., Keith, J. D. & Huminicki, M. A. E. Evidence for open-system
behavior in immiscible Fe–S–O liquids in silicate magmas: Implications for contributions of metals and sulfur to ore-forming fluids. _Can. Mineral._ 38, 1233–1249 (2000). Article Google
Scholar * Nadeau, O., Williams-Jones, A. E. & Stix, J. Sulphide magma as a source of metals in arc-related magmatic hydrothermal ore fluids. _Nat. Geosci._ 3, 501–505 (2010). Article
Google Scholar * Reekie, C. D. J. et al. Sulfide resorption during crustal ascent and degassing of oceanic plateau basalts. _Nat. Commun._ 10, 82 (2019). Article Google Scholar * Stavast,
W. J. A. et al. The fate of magmatic sulfides during intrusion or eruption, Bingham and Tintic districts, Utah. _Econ. Geol._ 101, 329–345 (2006). Article Google Scholar * Yao, Z. &
Mungall, J. E. Flotation mechanism of sulphide melt on vapour bubbles in partially molten magmatic systems. _Earth Planet. Sci. Lett._ 542, 116298 (2020). Article Google Scholar * Barnes,
S. J., Le Vaillant, M., Godel, B. & Lesher, C. M. Droplets and bubbles: solidification of sulphide-rich vapour-saturated orthocumulates in the Norilsk-Talnakh Ni–Cu–PGE ore-bearing
Intrusions. _J. Petrol._ 60, 269–300 (2018). Article Google Scholar * Le Vaillant, M., Barnes, S. J., Mungall, J. E. & Mungall, E. L. Role of degassing of the Noril’sk nickel deposits
in the Permian–Triassic mass extinction event. _Proc. Natl Acad. Sci. USA_ 114, 2485–2490 (2017). Article Google Scholar * Candela, P. A. A review of shallow, ore-related granites:
textures, volatiles, and ore metals. _J. Petrol._ 38, 1619–1633 (1997). Article Google Scholar * Murakami, H. et al. The relation between Cu/Au ratio and formation depth of porphyry-style
Cu–Au ± Mo deposits. _Miner. Deposita_ 45, 11–21 (2010). Article Google Scholar * D’Angelo, M. et al. Petrogenesis and magmatic evolution of the Guichon Creek batholith: Highland Valley
porphyry Cu ± (Mo) district, south-central British Columbia. _Econ. Geol._ 112, 1857–1888 (2017). Article Google Scholar * Dilles, J. H. Petrology of the Yerington Batholith, Nevada;
evidence for evolution of porphyry copper ore fluids. _Econ. Geol._ 82, 1750–1789 (1987). Article Google Scholar * Schöpa, A., Annen, C., Dilles, J. H., Sparks, R. S. J. & Blundy, J.
D. Magma emplacement rates and porphyry copper deposits: Thermal modeling of the Yerington batholith, Nevada. _Econ. Geol._ 112, 1653–1672 (2017). Article Google Scholar * Heinrich, C. A.,
Driesner, T., Stefánsson, A. & Seward, T. M. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. _Geology_ 32, 761–764 (2004).
Article Google Scholar * Kay, S. M., Mpodozis, C., Tittler, A. & Cornejo, P. Tertiary magmatic evolution of the Maricunga mineral belt in Chile. _Int. Geol. Rev._ 36, 1079–1112
(1994). Article Google Scholar * Vila, T. & Sillitoe, R. H. Gold-rich porphyry systems in the Maricunga belt, northern Chile. _Econ. Geol._ 86, 1238–1260 (1991). Article Google
Scholar * Leys, C. A. et al. in _Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe_ Vol. 16 (Society of Economic Geologists, 2012). *
Garwin, S. The geological characteristics, geochemical signature and geophysical expression of porphyry copper-(gold) deposits in the circum-Pacific region. _ASEG Ext. Abstr._ 2019, 1–4
(2019). Google Scholar * Grondahl, C. & Zajacz, Z. Magmatic controls on the genesis of porphyry Cu–Mo–Au deposits: The Bingham Canyon example. _Earth Planet. Sci. Lett._ 480, 53–65
(2017). Article Google Scholar * Holliday, J. R. et al. Porphyry gold–copper mineralisation in the Cadia district, eastern Lachlan Fold Belt, New South Wales, and its relationship to
shoshonitic magmatism. _Miner. Deposita_ 37, 100–116 (2002). Article Google Scholar * Jensen, E. P., Barton, M. D., Hagemann, S. G. & Brown, P. E. in _Gold_ Vol. 13 (Society of
Economic Geologists, 2000). * Sillitoe, R. H., Hagemann, S. G. & Brown, P. E. in _Gold_ Vol. 13 (Society of Economic Geologists, 2000). * Wainwright, A. J., Tosdal, R. M., Wooden, J. L.,
Mazdab, F. K. & Friedman, R. M. U–Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu–Au district, southern
Mongolia. _Gondwana Res._ 19, 764–787 (2011). Article Google Scholar * Rock, N. M. S. & Groves, D. I. Do lamprophyres carry gold as well as diamonds? _Nature_ 332, 253–255 (1988).
Article Google Scholar * Zajacz, Z. et al. Alkali metals control the release of gold from volatile-rich magmas. _Earth Planet. Sci. Lett._ 297, 50–56 (2010). Article Google Scholar *
Holwell, D. A. et al. A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism. _Nat. Commun._ 10, 3511 (2019). Article Google Scholar *
Heinrich, C. A. & Candela, P. A. in _Treatise on Geochemistry_ 2nd edn (eds Holland, H. D. & Turekian, K. K.) 1–28 (Elsevier, 2014). * Landtwing, M. R. et al. The Bingham Canyon
porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion. _Econ. Geol._ 105, 91–118 (2010). Article Google Scholar * Bodnar, R. J., Lecumberri-Sanchez,
P., Moncada, D. & Steele-MacInnis, M. in _Treatise on Geochemistry_ 2nd edn (eds Holland, H. D. & Turekian, K. K.) 119–142 (Elsevier, 2014). * Shinohara, H. Exsolution of immiscible
vapor and liquid phases from a crystallizing silicate melt: Implications for chlorine and metal transport. _Geochim. Cosmochim. Acta_ 58, 5215–5221 (1994). Article Google Scholar *
Webster, J. D. The exsolution of magmatic hydrosaline chloride liquids. _Chem. Geol._ 210, 33–48 (2004). Article Google Scholar * Guo, H. & Audétat, A. Transfer of volatiles and metals
from mafic to felsic magmas in composite magma chambers: An experimental study. _Geochim. Cosmochim. Acta_ 198, 360–378 (2017). Article Google Scholar * Zajacz, Z., Candela, P. A.,
Piccoli, P. M., Wälle, M. & Sanchez-Valle, C. Gold and copper in volatile saturated mafic to intermediate magmas: Solubilities, partitioning, and implications for ore deposit formation.
_Geochim. Cosmochim. Acta_ 91, 140–159 (2012). Article Google Scholar * Candela, P. A. & Holland, H. D. The partitioning of copper and molybdenum between silicate melts and aqueous
fluids. _Geochim. Cosmochim. Acta_ 48, 373–380 (1984). Article Google Scholar * Simon, A. C. et al. Gold partitioning in melt-vapor-brine systems. _Geochim. Cosmochim. Acta_ 69, 3321–3335
(2005). Article Google Scholar * Simon, A. C., Pettke, T., Candela, P. A., Piccoli, P. M. & Heinrich, C. A. Copper partitioning in a melt–vapor–brine–magnetite–pyrrhotite assemblage.
_Geochim. Cosmochim. Acta_ 70, 5583–5600 (2006). Article Google Scholar * Williams, T. J., Candela, P. A. & Piccoli, P. M. The partitioning of copper between silicate melts and
two-phase aqueous fluids: An experimental investigation at 1 kbar, 800 °C and 0.5 kbar, 850 °C. _Contrib. Mineral. Petrol._ 121, 388–399 (1995). Article Google Scholar * Rusk, B. G., Reed,
M. H. & Dilles, J. H. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. _Econ. Geol._ 103, 307–334 (2008).
Article Google Scholar * Frank, M. R., Simon, A. C., Pettke, T., Candela, P. A. & Piccoli, P. M. Gold and copper partitioning in magmatic-hydrothermal systems at 800 °C and 100 MPa.
_Geochim. Cosmochim. Acta_ 75, 2470–2482 (2011). Article Google Scholar * Lerchbaumer, L. & Audétat, A. High Cu concentrations in vapor-type fluid inclusions: An artifact? _Geochim.
Cosmochim. Acta_ 88, 255–274 (2012). DISCOVERED THAT THE CONVENTIONAL VAPOUR–BRINE PARTITION COEFFICIENTS OF CU INFERRED FROM NATURAL FLUID INCLUSIONS ARE AN ARTEFACT, SHOWING CU’S HIGHER
AFFINITY FOR BRINE THAN VAPOUR. Article Google Scholar * Zajacz, Z., Candela, P. A. & Piccoli, P. M. The partitioning of Cu, Au and Mo between liquid and vapor at magmatic temperatures
and its implications for the genesis of magmatic-hydrothermal ore deposits. _Geochim. Cosmochim. Acta_ 207, 81–101 (2017). Article Google Scholar * Driesner, T. & Heinrich, C. A. The
system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. _Geochim. Cosmochim. Acta_ 71,
4880–4901 (2007). Article Google Scholar * Gregory, M. J. A fluid inclusion and stable isotope study of the Pebble porphyry copper-gold-molybdenum deposit, Alaska. _Ore Geol. Rev._ 80,
1279–1303 (2017). Article Google Scholar * Crerar, D. A. & Barnes, H. L. Ore solution chemistry; V, Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at
200 degrees to 350 degrees C. _Econ. Geol._ 71, 772–794 (1976). Article Google Scholar * Landtwing, M. R. et al. Copper deposition during quartz dissolution by cooling
magmatic–hydrothermal fluids: the Bingham porphyry. _Earth Planet. Sci. Lett._ 235, 229–243 (2005). Article Google Scholar * Henley, R. W. & Berger, B. R. Nature’s refineries — Metals
and metalloids in arc volcanoes. _Earth Sci. Rev._ 125, 146–170 (2013). Article Google Scholar * Giggenbach, W. F. Redox processes governing the chemistry of fumarolic gas discharges from
White Island, New Zealand. _Appl. Geochem._ 2, 143–161 (1987). Article Google Scholar * Gustafson, L. B. & Hunt, J. P. The porphyry copper deposit at El Salvador, Chile. _Econ. Geol._
70, 857–912 (1975). Article Google Scholar * Li, Y. & Audétat, A. Gold solubility and partitioning between sulfide liquid, monosulfide solid solution and hydrous mantle melts:
Implications for the formation of Au-rich magmas and crust–mantle differentiation. _Geochim. Cosmochim. Acta_ 118, 247–262 (2013). Article Google Scholar * Liu, Y. & Brenan, J.
Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled
fO2–fS2 conditions. _Geochim. Cosmochim. Acta_ 159, 139–161 (2015). Article Google Scholar * Costa, S. et al. Tracking metal evolution in arc magmas: Insights from the active volcano of
La Fossa, Italy. _Lithos_ 380–381, 105851 (2021). Article Google Scholar * Wang, Z. et al. Evolution of copper isotopes in arc systems: Insights from lavas and molten sulfur in Niuatahi
volcano, Tonga rear arc. _Geochim. Cosmochim. Acta_ 250, 18–33 (2019). Article Google Scholar * Rottier, B., Audétat, A., Koděra, P. & Lexa, J. Magmatic evolution of the mineralized
Štiavnica volcano (Central Slovakia): Evidence from thermobarometry, melt inclusions, and sulfide inclusions. _J. Volcanol. Geotherm. Res._ 401, 106967 (2020). Article Google Scholar *
Rottier, B., Audétat, A., Koděra, P. & Lexa, J. Origin and evolution of magmas in the porphyry Au-mineralized Javorie volcano (Central Slovakia): Evidence from thermobarometry, melt
Inclusions and sulfide inclusions. _J. Petrol._ 60, 2449–2482 (2020). Article Google Scholar * Proffett, J. M. High Cu grades in porphyry Cu deposits and their relationship to emplacement
depth of magmatic sources. _Geology_ 37, 675–678 (2009). Article Google Scholar * Hou, Z. et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in
continental collision zones. _Geology_ 43, 247–250 (2015). Article Google Scholar * Hou, Z. et al. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in
the Tibetan Orogen. _Ore Geol. Rev._ 36, 25–51 (2009). Article Google Scholar * Hou, Z. et al. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu
systems in Tibet. _Miner. Deposita_ 48, 173–192 (2013). Article Google Scholar * Blanks, D. E. et al. Fluxing of mantle carbon as a physical agent for metallogenic fertilization of the
crust. _Nat. Commun._ 11, 4342 (2020). Article Google Scholar * Singer, D. A., Berger, V. I. & Moring, B. C. Porphyry copper deposits of the world: Database and grade and tonnage
models, 2008. U.S. Geological Survey open-file report 2008-1155. _USGS_ https://pubs.usgs.gov/of/2008/1155/ (2008). * Clark, A. H., Whiting, B. H., Hodgson, C. J. & Mason, R. in _Giant
Ore Deposits_ (Society of Economic Geologists, 1993). * Bai, Z.-J., Zhong, H., Hu, R.-Z. & Zhu, W.-G. Early sulfide saturation in arc volcanic rocks of southeast China: Implications for
the formation of co-magmatic porphyry–epithermal Cu–Au deposits. _Geochim. Cosmochim. Acta_ 280, 66–84 (2020). Article Google Scholar * Huang, M.-L. et al. The role of early sulfide
saturation in the formation of the Yulong porphyry Cu-Mo deposit: evidence from mineralogy of sulfide melt inclusions and platinum-group element geochemistry. _Ore Geol. Rev._ 124, 103644
(2020). Article Google Scholar * Park, J.-W., Campbell, I. H. & Eggins, S. M. Enrichment of Rh, Ru, Ir and Os in Cr spinels from oxidized magmas: Evidence from the Ambae volcano,
Vanuatu. _Geochim. Cosmochim. Acta_ 78, 28–50 (2012). Article Google Scholar * Dale, C. W., Macpherson, C. G., Pearson, D. G., Hammond, S. J. & Arculus, R. J. Inter-element
fractionation of highly siderophile elements in the Tonga Arc due to flux melting of a depleted source. _Geochim. Cosmochim. Acta_ 89, 202–225 (2012). Article Google Scholar Download
references ACKNOWLEDGEMENTS J.-W.P. was supported by a fund from the Korea Government Ministry of Science and ICT (NRF-2019R1A2C1009809). I.H.C. was supported by an Australian Research
Council Discovery Grant (DP17010340). H.H. acknowledges the support from Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT
(2019H1D3A1A01102977). M.C. acknowledges support from the Swiss National Science Foundation (200020_162415, 200021_169032). The authors thank J. H. Seo for their discussion and comments on
the manuscript. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * School of Earth and Environmental Sciences, Seoul National University, Seoul, Republic of Korea Jung-Woo Park * Research
Institute of Oceanography, Seoul National University, Seoul, Republic of Korea Jung-Woo Park & Hongda Hao * Research School of Earth Sciences, Australian National University, Canberra,
Australia Ian H. Campbell * Department of Earth Sciences, University of Geneva, Geneva, Switzerland Massimo Chiaradia * Department of Earth, Environmental and Planetary Sciences, Rice
University, Houston, TX, USA Cin-Ty Lee Authors * Jung-Woo Park View author publications You can also search for this author inPubMed Google Scholar * Ian H. Campbell View author
publications You can also search for this author inPubMed Google Scholar * Massimo Chiaradia View author publications You can also search for this author inPubMed Google Scholar * Hongda Hao
View author publications You can also search for this author inPubMed Google Scholar * Cin-Ty Lee View author publications You can also search for this author inPubMed Google Scholar
CONTRIBUTIONS J.-W.P., I.H.C. and M.C. substantially contributed to the discussion and writing of the manuscript. H.H. and C.-T.L. contributed to the discussion of the content and reviewed
the manuscript before submission. H.H. and M.C. compiled the data sets and drafted the figures. CORRESPONDING AUTHOR Correspondence to Jung-Woo Park. ETHICS DECLARATIONS COMPETING INTERESTS
The authors declare no competing interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature Reviews Earth & Environment_ thanks E. Melekhova, J. Mungall and J. Dilles (who
co-reviewed with M. Campbell) for their contribution to the peer review of this work. PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION GLOSSARY * Sulfide saturation Silicate melt becomes saturated with a sulfide phase, normally an immiscible
sulfide melt, and segregates from the silicate melt. * Hydrothermal system A system that redistributes energy and mass by circulation of hot, water-rich fluid. * Differentiation Processes
that lead to changes in magma composition, such as fractional crystallization, crustal assimilation, recharge and mixing. * Fluid exsolution A process through which water-rich fluid
separates from silicate melt. * Metasomatized Metamorphic processes that change the chemical composition of a rock in a pervasive manner by interaction with aqueous fluids. * Chalcophile
elements Elements that have a high affinity with sulfur and form sulfide minerals or partition strongly into immiscible sulfide melts. * Monosulfide solid solution A high-temperature
(>∼600 °C) sulfide phase that is mainly composed of Fe with minor Ni and Cu. * Fractionation Removal and segregation of a mineral from a melt. * Oxygen fugacity (_f_O2) Partial pressure
of oxygen in a given environment. * Cumulates Igneous rocks formed by accumulation of crystals from magma. * Adakite An intermediate to felsic volcanic rock that has geochemical signatures
of magma thought to be produced by partial melting of altered basalt. * Subduction erosion Removal of upper plate materials in active continental margins. * Delamination Detachment of lower
crust and/or mantle lithosphere from the continental crust. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Park, JW., Campbell, I.H., Chiaradia, M. _et
al._ Crustal magmatic controls on the formation of porphyry copper deposits. _Nat Rev Earth Environ_ 2, 542–557 (2021). https://doi.org/10.1038/s43017-021-00182-8 Download citation *
Accepted: 21 May 2021 * Published: 06 July 2021 * Issue Date: August 2021 * DOI: https://doi.org/10.1038/s43017-021-00182-8 SHARE THIS ARTICLE Anyone you share the following link with will
be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt
content-sharing initiative