Crustal magmatic controls on the formation of porphyry copper deposits


Crustal magmatic controls on the formation of porphyry copper deposits

Play all audios:


ABSTRACT Porphyry deposits are large, low-grade metal ore bodies that are formed from hydrothermal fluids derived from an underlying magma reservoir. They are important as major sources of


critical metals for industry and society, such as copper and gold. However, the magmatic and redox processes required to form economic-grade porphyry deposits remain poorly understood. In


this Review, we discuss advances in understanding crustal magmatic conditions that favour the formation of porphyry Cu deposits at subduction zones. Chalcophile metal fertility of


mantle-derived arc magmas is primarily modulated by the amount and nature of residual sulfide phases in the mantle wedge during partial melting. Crustal thickness influences the longevity of


lower crustal magma reservoirs and the sulfide saturation history. For example, in thick crust, prolonged magma activity with hydrous and oxidized evolving magmas increases ore potential,


whereas thin crust favours high chalcophile element fertility, owing to late sulfide saturation. A shallow depth (<7 km) of fluid exsolution might play a role in increasing Au


precipitation efficiency, as immiscible sulfide melts act as a transient storage of chalcophile metals and liberate them to ore fluids. Future studies should aim to identify the predominant


sulfide phases in felsic systems to determine their influence on the behaviour of chalcophile elements during magma differentiation. KEY POINTS * Prolonged injection of hydrous basaltic


magmas and accumulation of andesitic magmas in the mid to lower crust are prerequisites to forming large porphyry deposits because these processes are required to maintain a long-lived


magmatic system and associated hydrothermal activity in the shallow crust. * Crustal thickness influences the duration and volume of magma activity, timing of sulfide saturation, chalcophile


element fertility and emplacement depth of porphyry intrusions. * Thick crusts (>40 km) increase porphyry Cu ore potential by producing voluminous and hydrous magmas in long-lived (≥2–3 


Ma) mid to lower crustal magma reservoirs at ∼30–70 km depth, which can result in the formation of supergiant to giant porphyry Cu deposits if a combination of other ore-forming conditions


is fulfilled. * In thin crust (<40 km), late sulfide saturation and high chalcophile element fertility in shallow magma reservoirs (∼5–15 km depth) increase Au-rich porphyry Cu ore


potential. * Immiscible sulfide melts can act as temporary metal storage locations when the sulfide melts and exsolved fluids interact in shallow magma reservoirs. * Depth of porphyry


emplacement (∼1–7 km), magma alkalinity and Au fertility control Au endowments in porphyry Cu deposits Access through your institution Buy or subscribe This is a preview of subscription


content, access via your institution ACCESS OPTIONS Access through your institution Access Nature and 54 other Nature Portfolio journals Get Nature+, our best-value online-access


subscription $32.99 / 30 days cancel any time Learn more Subscribe to this journal Receive 12 digital issues and online access to articles $119.00 per year only $9.92 per issue Learn more


Buy this article * Purchase on SpringerLink * Instant access to full article PDF Buy now Prices may be subject to local taxes which are calculated during checkout ADDITIONAL ACCESS OPTIONS:


* Log in * Learn about institutional subscriptions * Read our FAQs * Contact customer support SIMILAR CONTENT BEING VIEWED BY OTHERS A RAPID CHANGE IN MAGMA PLUMBING TAPS PORPHYRY COPPER


DEPOSIT-FORMING MAGMAS Article Open access 14 October 2022 PORPHYRY COPPER FORMATION DRIVEN BY WATER-FLUXED CRUSTAL MELTING DURING FLAT-SLAB SUBDUCTION Article Open access 04 November 2024


SULFUR AND CHLORINE BUDGETS CONTROL THE ORE FERTILITY OF ARC MAGMAS Article Open access 21 July 2022 REFERENCES * Arndt, N. T. et al. Future global mineral resources. _Geochem. Perspect.


Lett._ 6, 1–2 (2017). Google Scholar  * Schipper, B. W. et al. Estimating global copper demand until 2100 with regression and stock dynamics. _Resour. Conserv. Recycl._ 132, 28–36 (2018).


Article  Google Scholar  * Sillitoe, R. H. Porphyry copper systems. _Econ. Geol._ 105, 3–41 (2010). Article  Google Scholar  * Chiaradia, M. Gold endowments of porphyry deposits controlled


by precipitation efficiency. _Nat. Commun._ 11, 248 (2020). REVEALED DIFFERENT AU PRECIPITATION EFFICIENCIES BETWEEN AU-RICH AND AU-POOR PORPHYRY CU DEPOSITS AND SUGGESTED A LINK BETWEEN


EMPLACEMENT DEPTH AND AU ENDOWMENT. Article  Google Scholar  * Lee, C. T. A. & Tang, M. How to make porphyry copper deposits. _Earth Planet. Sci. Lett._ 529, 115868 (2020). PROPOSED THAT


AUTO-OXIDATION BY GARNET FRACTIONATION IN THICK ARCS CAN HAVE IMPORTANT EFFECTS ON THE FORMATION OF PORPHYRY CU DEPOSITS. Article  Google Scholar  * Richards, J. P. The oxidation state, and


sulfur and Cu contents of arc magmas: implications for metallogeny. _Lithos_ 233, 27–45 (2015). Article  Google Scholar  * Chiaradia, M. Copper enrichment in arc magmas controlled by


overriding plate thickness. _Nat. Geosci._ 7, 43–46 (2014). Article  Google Scholar  * Loucks, R. R. Distinctive composition of copper-ore-forming arc magmas. _Aust. J. Earth Sci._ 61, 5–16


(2014). Article  Google Scholar  * Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. _J. Petrol._ 47, 505–539 (2005).


PIONEERING STUDY THAT PROVIDED A MODEL, BASED ON EXPERIMENTAL DATA AND NUMERICAL MODELLING, FOR THE FORMATION OF HYDROUS INTERMEDIATE AND SILICIC MAGMAS IN THE LOWER CRUSTAL MAGMA RESERVOIR


IN SUBDUCTION ZONES. Article  Google Scholar  * Chelle-Michou, C., Rottier, B., Caricchi, L. & Simpson, G. Tempo of magma degassing and the genesis of porphyry copper deposits. _Sci.


Rep._ 7, 40566 (2017). Article  Google Scholar  * Chiaradia, M. & Caricchi, L. Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment. _Sci. Rep._ 7, 44523


(2017). REVEALED THE IMPORTANCE OF PROLONGED MAGMA ACCUMULATION AND EVOLUTION IN THE LOWER CRUSTAL RESERVOIR, GENERATING LARGE AMOUNTS OF HYDROUS ANDESITIC MAGMA THAT CONTAINS ENOUGH WATER


TO DELIVER LARGE AMOUNTS OF CU AND AU IN PORPHYRY DEPOSITS. Article  Google Scholar  * Blundy, J., Mavrogenes, J., Tattitch, B., Sparks, S. & Gilmer, A. Generation of porphyry copper


deposits by gas–brine reaction in volcanic arcs. _Nat. Geosci._ 8, 235–240 (2015). Article  Google Scholar  * Henley, R. W. et al. Porphyry copper deposit formation by sub-volcanic sulphur


dioxide flux and chemisorption. _Nat. Geosci._ 8, 210–215 (2015). Article  Google Scholar  * Li, Y. et al. An essential role for sulfur in sulfide-silicate melt partitioning of gold and


magmatic gold transport at subduction settings. _Earth Planet. Sci. Lett._ 528, 115850 (2019). Article  Google Scholar  * Matjuschkin, V., Blundy, J. D. & Brooker, R. A. The effect of


pressure on sulphur speciation in mid- to deep-crustal arc magmas and implications for the formation of porphyry copper deposits. _Contrib. Mineral. Petrol._ 171, 66 (2016). Article  Google


Scholar  * Mungall, J. E., Brenan, J. M., Godel, B., Barnes, S. J. & Gaillard, F. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles. _Nat.


Geosci._ 8, 216–219 (2015). FIRST EXPERIMENTAL STUDY TO DEMONSTRATE A MECHANISM FOR SULFUR AND METAL TRANSFER FROM SULFIDE MELT TO MAGMATIC VAPOUR. Article  Google Scholar  * Cocker, H. A.,


Valente, D. L., Park, J. W. & Campbell, I. H. Using platinum group elements to identify sulfide saturation in a porphyry Cu system: the El Abra porphyry Cu deposit, Northern Chile. _J.


Petrol._ 56, 2491–2514 (2015). Article  Google Scholar  * Park, J. W. et al. Chalcophile element fertility and the formation of porphyry Cu ± Au deposits. _Miner. Deposita_ 54, 657–670


(2019). FOUND THE CORRELATION BETWEEN CHALCOPHILE ELEMENT FERTILITY AND PORPHYRY ORE TYPE (CU-AU VERSUS CU VERSUS BARREN) USING A PLATINUM GROUP ELEMENT AS A CHALCOPHILE ELEMENT FERTILITY


INDICATOR. Article  Google Scholar  * Richards, J. P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. _Econ. Geol. Bull. Soc._ 98, 1515–1533 (2003). Article  Google


Scholar  * Wilkinson, J. J. Triggers for the formation of porphyry ore deposits in magmatic arcs. _Nat. Geosci._ 6, 917–925 (2013). Article  Google Scholar  * Cooke, D. R., Hollings, P.


& Walsh, J. L. Giant porphyry deposits: Characteristics, distribution, and tectonic controls. _Econ. Geol._ 100, 801–818 (2005). Article  Google Scholar  * Burnham, C. W. in


_Geochemistry of Hydrothermal Ore Deposits_ (ed. Barnes, H. L.) 71–136 (Wiley, 1979). * Sillitoe, R. Some metallogenic features of gold and copper deposits related to alkaline rocks and


consequences for exploration. _Miner. Deposita_ 37, 4–13 (2002). Article  Google Scholar  * Audétat, A., Simon, A. C., Hedenquist, J. W., Harris, M. & Camus, F. in _Geology and Genesis


of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe_ Vol. 16 (Society of Economic Geologists, 2012). * Candela, P. A. et al. in _One Hundredth Anniversary


Volume_ (Society of Economic Geologists, 2005). * Hedenquist, J. W. & Lowenstern, J. B. The role of magmas in the formation of hydrothermal ore-deposits. _Nature_ 370, 519–527 (1994).


Article  Google Scholar  * Richards, J. P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. _Ore Geol. Rev._ 40, 1–26 (2011). Article  Google Scholar  * Richards, J.


P. Giant ore deposits formed by optimal alignments and combinations of geological processes. _Nat. Geosci._ 6, 911–916 (2013). Article  Google Scholar  * Seedorff, E. et al. in _Economic


Geology and the Bulletin of the Society. One Hundredth Anniversary Volume_ (eds Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J. & Richards, J. P.) 251–298 (Society of Economic


Geologists, 2005). * Botcharnikov, R. E. et al. Behavior of gold in a magma at sulfide-sulfate transition: Revisited. _Am. Mineral._ 98, 1459–1464 (2013). Article  Google Scholar  * Kiseeva,


E. S., Fonseca, R. O. C. & Smythe, D. J. Chalcophile elements and sulfides in the upper mantle. _Elements_ 13, 111–116 (2017). Article  Google Scholar  * McInnes, B. I. A., McBride, J.


S., Evans, N. J., Lambert, D. D. & Andrew, A. S. Osmium isotope constraints on ore metal recycling in subduction zones. _Science_ 286, 512–516 (1999). Article  Google Scholar  * Mungall,


J. E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. _Geology_ 30, 915–918 (2002). PROPOSED THAT HIGHLY OXIDIZING SLAB-DERIVED MELTS OR SUPERCRITICAL


FLUIDS PLAY AN ESSENTIAL ROLE IN PRODUCING CU-RICH AND AU-RICH PRIMARY MAGMAS, INCREASING PORPHYRY CU-AU ORE POTENTIAL. Article  Google Scholar  * Rehkämper, M. et al. Ir, Ru, Pt, and Pd in


basalts and komatiites: New constraints for the geochemical behavior of the platinum-group elements in the mantle. _Geochim. Cosmochim. Acta_ 63, 3915–3934 (1999). Article  Google Scholar 


* Yao, Z., Qin, K. & Mungall, J. E. Tectonic controls on Ni and Cu contents of primary mantle-derived magmas for the formation of magmatic sulfide deposits. _Am. Mineral._ 103, 1545–1567


(2018). Article  Google Scholar  * Candela, P. A., Brown, P. E. & Chappell, B. W. in _The Second Hutton Symposium on the Origin of Granites and Related Rocks_ Vol. 272 (Geological


Society of America, 1992). * Cline, J. S. & Bodnar, R. J. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt. _J. Geophys. Res. Solid_ 96, 8113–8126


(1991). Article  Google Scholar  * Richards, J. P. A shake-up in the porphyry world? _Econ. Geol._ 113, 1225–1233 (2018). Article  Google Scholar  * Spooner, E. T. C. Magmatic


sulphide/volatile interaction as a mechanism for producing chalcophile element enriched, Archean Au-quartz, epithermal Au-Ag and Au skarn hydrothermal ore fluids. _Ore Geol. Rev._ 7, 359–379


(1993). Article  Google Scholar  * Richards, J. P., Spell, T., Rameh, E., Razique, A. & Fletcher, T. High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu


± Mo ± Au potential: examples from the tethyan arcs of central and eastern Iran and western Pakistan. _Econ. Geol._ 107, 295–332 (2012). Article  Google Scholar  * Francis, R. D. Sulfide


globules in mid-ocean ridge basalts (MORB), and the effect of oxygen abundance in Fe-S-O liquids on the ability of those liquids to partition metals from MORB and komatiite magmas. _Chem.


Geol._ 85, 199–213 (1990). Article  Google Scholar  * Mungall, J. E. & Brenan, J. M. Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of


mantle-crust fractionation of the chalcophile elements. _Geochim. Cosmochim. Acta_ 125, 265–289 (2014). Article  Google Scholar  * Alard, O., Griffin, W. L., Lorand, J. P., Jackson, S. E.


& O’Reilly, S. Y. Non-chondritic distribution of the highly siderophile elements in mantle sulphides. _Nature_ 407, 891–894 (2000). Article  Google Scholar  * Barnes, S.-J., van


Achterbergh, E., Makovicky, E. & Li, C. Proton microprobe results for the partitioning of platinum-group elements between monosulphide solid solution and sulphide liquid. _S. Afr. J.


Geol._ 104, 275–286 (2001). Article  Google Scholar  * Li, C., Barnes, S. J., Makovicky, E., Rose-Hansen, J. & Makovicky, M. Partitioning of nickel, copper, iridium, rhenium, platinum,


and palladium between monosulfide solid solution and sulfide liquid: Effects of composition and temperature. _Geochim. Cosmochim. Acta_ 60, 1231–1238 (1996). Article  Google Scholar  *


Mungall, J. E., Andrews, D. R. A., Cabri, L. J., Sylvester, P. J. & Tubrett, M. Partitioning of Cu, Ni, Au, and platinum-group elements between monosulfide solid solution and sulfide


melt under controlled oxygen and sulfur fugacities. _Geochim. Cosmochim. Acta_ 69, 4349–4360 (2005). Article  Google Scholar  * Du, J. & Audétat, A. Early sulfide saturation is not


detrimental to porphyry Cu-Au formation. _Geology_ 48, 519–524 (2020). Article  Google Scholar  * Zhang, D. & Audétat, A. What caused the formation of the giant Bingham Canyon porphyry


Cu-Mo-Au deposit? Insights from melt inclusions and magmatic sulfides. _Econ. Geol. Bull. Soc._ 112, 221–244 (2017). Article  Google Scholar  * Sun, W.-d et al. The link between reduced


porphyry copper deposits and oxidized magmas. _Geochim. Cosmochim. Acta_ 103, 263–275 (2013). Article  Google Scholar  * Kiseeva, E. S. & Wood, B. J. A simple model for chalcophile


element partitioning between sulphide and silicate liquids with geochemical applications. _Earth Planet. Sci. Lett._ 383, 68–81 (2013). Article  Google Scholar  * Ripley, E. M., Brophy, J.


G. & Li, C. Copper solubility in a basaltic melt and sulfide liquid/silicate melt partition coefficients of Cu and Fe. _Geochim. Cosmochim. Acta_ 66, 2791–2800 (2002). Article  Google


Scholar  * Zhang, Z. & Hirschmann, M. M. Experimental constraints on mantle sulfide melting up to 8 GPa. _Am. Mineral._ 101, 181–192 (2016). Article  Google Scholar  * Li, Y. &


Audétat, A. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions. _Earth Planet. Sci.


Lett._ 355-356, 327–340 (2012). Article  Google Scholar  * Aulbach, S., Mungall, J. E. & Pearson, D. G. Distribution and processing of highly siderophile elements in cratonic mantle


lithosphere. _Rev. Mineral. Geochem._ 81, 239–304 (2016). Article  Google Scholar  * Hamlyn, P. R., Keays, R. R., Cameron, W. E., Crawford, A. J. & Waldron, H. M. Precious metals in


magnesian low-Ti lavas: Implications for metallogenesis and sulfur saturation in primary magmas. _Geochim. Cosmochim. Acta_ 49, 1797–1811 (1985). Article  Google Scholar  * McDonough, W. F.


& Sun, S. S. The composition of the Earth. _Chem. Geol._ 120, 223–253 (1995). Article  Google Scholar  * Mavrogenes, J. A. & O’Neill, H. S. C. The relative effects of pressure,


temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. _Geochim. Cosmochim. Acta_ 63, 1173–1180 (1999). Article  Google Scholar  * Jugo, P. J. Sulfur content at


sulfide saturation in oxidized magmas. _Geology_ 37, 415–418 (2009). Article  Google Scholar  * Jugo, P. J., Luth, R. W. & Richards, J. P. Experimental data on the speciation of sulfur


as a function of oxygen fugacity in basaltic melts. _Geochim. Cosmochim. Acta_ 69, 497–503 (2005). Article  Google Scholar  * Lee, C.-T. A. et al. The redox state of arc mantle using Zn/Fe


systematics. _Nature_ 468, 681–685 (2010). Article  Google Scholar  * Lee, C. T. A., Leeman, W. P., Canil, D. & Li, Z. X. A. Similar V/Sc systematics in MORB and arc basalts:


Implications for the oxygen fugacities of their mantle source regions. _J. Petrol._ 46, 2313–2336 (2005). Article  Google Scholar  * Lee, C. T. A. et al. Copper systematics in arc magmas and


implications for crust-mantle differentiation. _Science_ 336, 64–68 (2012). Article  Google Scholar  * Mallmann, G. & O’Neill, H. S. C. The crystal/melt partitioning of V during mantle


melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). _J. Petrol._ 50, 1765–1794 (2009). Article  Google Scholar  *


Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. _Geochem. Geophys. Geosyst._ 5, Q05B07 (2004). Article  Google Scholar  * Hildreth, W. & Moorbath, S. Crustal


contributions to arc magmatism in the Andes of central Chile. _Contrib. Mineral. Petrol._ 98, 455–489 (1988). Article  Google Scholar  * Lee, C.-T. A., Lee, T. C. & Wu, C.-T. Modeling


the compositional evolution of recharging, evacuating, and fractionating (REFC) magma chambers: Implications for differentiation of arc magmas. _Geochim. Cosmochim. Acta_ 143, 8–22 (2014).


PROPOSED A MODEL TO PRODUCE HYDROUS AND OXIDIZED ARC MAGMA IN THE LONG-LIVED LOWER CRUSTAL MAGMA CHAMBER IN SUBDUCTION ZONES. Article  Google Scholar  * Lee, C.-T. A. & Anderson, D. L.


Continental crust formation at arcs, the arclogite “delamination” cycle, and one origin for fertile melting anomalies in the mantle. _Sci. Bull._ 60, 1141–1156 (2015). Article  Google


Scholar  * Alonso-Perez, R., Müntener, O. & Ulmer, P. Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. _Contrib.


Mineral. Petrol._ 157, 541–558 (2008). Article  Google Scholar  * Tang, M., Erdman, M., Eldridge, G. & Lee, C.-T. A. The redox “filter” beneath magmatic orogens and the formation of


continental crust. _Sci. Adv._ 4, eaar4444 (2018). Article  Google Scholar  * Tang, M., Lee, C.-T. A., Costin, G. & Höfer, H. E. Recycling reduced iron at the base of magmatic orogens.


_Earth Planet. Sci. Lett._ 528, 115827 (2019). Article  Google Scholar  * Cox, D., Watt, S. F. L., Jenner, F. E., Hastie, A. R. & Hammond, S. J. Chalcophile element processing beneath a


continental arc stratovolcano. _Earth Planet. Sci. Lett._ 522, 1–11 (2019). Article  Google Scholar  * Cox, D. et al. Elevated magma fluxes deliver high-Cu magmas to the upper crust.


_Geology_ 48, 957–960 (2020). Article  Google Scholar  * Etschmann, B. E. et al. An _in situ_ XAS study of copper(I) transport as hydrosulfide complexes in hydrothermal solutions (25–592 °C,


180–600 bar): Speciation and solubility in vapor and liquid phases. _Geochim. Cosmochim. Acta_ 74, 4723–4739 (2010). Article  Google Scholar  * Pokrovski, G. S., Borisova, A. Y. &


Harrichoury, J.-C. The effect of sulfur on vapor–liquid fractionation of metals in hydrothermal systems. _Earth Planet. Sci. Lett._ 266, 345–362 (2008). Article  Google Scholar  * Seo, J.


H., Guillong, M. & Heinrich, C. A. The role of sulfur in the formation of magmatic–hydrothermal copper–gold deposits. _Earth Planet. Sci. Lett._ 282, 323–328 (2009). Article  Google


Scholar  * Seo, J. H., Guillong, M. & Heinrich, C. A. Separation of molybdenum and copper in porphyry deposits: the roles of sulfur, redox, and ph in ore mineral deposition at bingham


canyon. _Econ. Geol._ 107, 333–356 (2012). Article  Google Scholar  * Ballard, J. R., Palin, M. J. & Campbell, I. H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in


zircon: application to porphyry copper deposits of northern Chile. _Contrib. Mineral. Petrol._ 144, 347–364 (2002). Article  Google Scholar  * Hao, H. D., Campbell, I. H., Richards, J. P.,


Nakamura, E. & Sakaguchi, C. Platinum-group element geochemistry of the Escondida igneous suites, Northern chile: implications for ore formation. _J. Petrol._ 60, 487–514 (2019). Article


  Google Scholar  * Stern, C. R., Skewes, M. A. & Arévalo, A. Magmatic evolution of the giant El Teniente Cu–Mo deposit, central Chile. _J. Petrol._ 52, 1591–1617 (2010). Article  Google


Scholar  * Zimmer, M. M. et al. The role of water in generating the calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index. _J. Petrol._ 51, 2411–2444 (2010).


Article  Google Scholar  * Chapman, J. B., Ducea, M. N., DeCelles, P. G. & Profeta, L. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: An example from the


North American Cordillera. _Geology_ 43, 919–922 (2015). Article  Google Scholar  * Chiaradia, M. Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale


perspective. _Sci. Rep._ 5, 8115 (2015). Article  Google Scholar  * Profeta, L. et al. Quantifying crustal thickness over time in magmatic arcs. _Sci. Rep._ 5, 17786 (2015). Article  Google


Scholar  * Defant, M. J. & Drummond, M. S. Derivation of some modern arc magmas by melting of young subducted lithosphere. _Nature_ 347, 662–665 (1990). Article  Google Scholar  * Sun,


W. et al. The genetic association of adakites and Cu–Au ore deposits. _Int. Geol. Rev._ 53, 691–703 (2011). Article  Google Scholar  * Oyarzun, R., Márquez, A., Lillo, J., López, I. &


Rivera, S. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism. _Miner. Deposita_ 36, 794–798 (2001). Article 


Google Scholar  * Sajona, F. G. & Maury, R. C. Association of adakites with gold and copper mineralization in the Philippines. _C. R. Acad. Sci._ 326, 27–34 (1998). Google Scholar  *


Macpherson, C. G., Dreher, S. T. & Thirlwall, M. F. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines. _Earth Planet. Sci.


Lett._ 243, 581–593 (2006). Article  Google Scholar  * Richards, J. P. & Kerrich, R. Special paper: adakite-like rocks: their diverse origins and questionable role in metallogenesis.


_Econ. Geol._ 102, 537–576 (2007). Article  Google Scholar  * Chiaradia, M., Ulianov, A., Kouzmanov, K. & Beate, B. Why large porphyry Cu deposits like high Sr/Y magmas? _Sci. Rep._ 2,


685 (2012). Article  Google Scholar  * Richards, J. P. High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: Just add water. _Econ. Geol._ 106, 1075–1081 (2011). Article  Google Scholar 


* Singer, D. A. World class base and precious metal deposits; a quantitative analysis. _Econ. Geol._ 90, 88–104 (1995). Article  Google Scholar  * Ariskin, A. A. et al. Modeling solubility


of Fe-Ni sulfides in basaltic magmas: the effect of nickel. _Econ. Geol._ 108, 1983–2003 (2013). Article  Google Scholar  * Li, C. & Ripley, E. M. Empirical equations to predict the


sulfur content of mafic magmas at sulfide saturation and applications to magmatic sulfide deposits. _Miner. Deposita_ 40, 218–230 (2005). Article  Google Scholar  * O’Neill, H. S. C. &


Mavrogenes, J. A. The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400 °C and 1 bar. _J. Petrol._ 43, 1049–1087 (2002). Article  Google Scholar  *


Park, J.-W., Campbell, I. H. & Arculus, R. J. Platinum-alloy and sulfur saturation in an arc-related basalt to rhyolite suite: Evidence from the Pual Ridge lavas, the Eastern Manus


Basin. _Geochim. Cosmochim. Acta_ 101, 76–95 (2013). Article  Google Scholar  * Park, J. W., Campbell, I. H., Kim, J. & Moon, J. W. The role of late sulfide saturation in the formation


of a Cu- and Au-rich magma: insights from the platinum group element geochemistry of Niuatahi–Motutahi lavas, Tonga rear arc. _J. Petrol._ 56, 59–81 (2015). Article  Google Scholar  *


Lowczak, J. N., Campbell, I. H., Cocker, H., Park, J. W. & Cooke, D. R. Platinum-group element geochemistry of the Forest Reef Volcanics, southeastern Australia: Implications for


porphyry Au-Cu mineralisation. _Geochim. Cosmochim. Acta_ 220, 385–406 (2018). Article  Google Scholar  * Hao, H., Campbell, I. H., Arculus, R. J. & Perfit, M. R. Using precious metal


probes to quantify mid-ocean ridge magmatic processes. _Earth Planet. Sci. Lett._ 553, 116603 (2021). Article  Google Scholar  * Chen, K. et al. Sulfide-bearing cumulates in deep continental


arcs: The missing copper reservoir. _Earth Planet. Sci. Lett._ 531, 115971 (2020). Article  Google Scholar  * Chin, E. J., Shimizu, K., Bybee, G. M. & Erdman, M. E. On the development


of the calc-alkaline and tholeiitic magma series: A deep crustal cumulate perspective. _Earth Planet. Sci. Lett._ 482, 277–287 (2018). Article  Google Scholar  * Jenner, F. E. Cumulate


causes for the low contents of sulfide-loving elements in the continental crust. _Nat. Geosci._ 10, 524–529 (2017). Article  Google Scholar  * Straub, S. M., Gómez-Tuena, A. & Vannucchi,


P. Subduction erosion and arc volcanism. _Nat. Rev. Earth Environ._ 1, 574–589 (2020). Article  Google Scholar  * Wykes, J. L., O’Neill, H. S. C. & Mavrogenes, J. A. The effect of FeO


on the sulfur content at sulfide saturation (SCSS) and the selenium content at selenide saturation of silicate melts. _J. Petrol._ 56, 1407–1424 (2015). Article  Google Scholar  *


Iacono-Marziano, G., Ferraina, C., Gaillard, F., Di Carlo, I. & Arndt, N. T. Assimilation of sulfate and carbonaceous rocks: Experimental study, thermodynamic modeling and application to


the Noril’sk-Talnakh region (Russia). _Ore Geol. Rev._ 90, 399–413 (2017). Article  Google Scholar  * Ripley, E. M. & Li, C. Sulfide saturation in mafic magmas: Is external sulfur


required for magmatic Ni-Cu-(PGE) ore genesis? _Econ. Geol._ 108, 45–58 (2013). Article  Google Scholar  * Tomkins, A. G., Rebryna, K. C., Weinberg, R. F. & Schaefer, B. F. Magmatic


sulfide formation by reduction of oxidized arc basalt. _J. Petrol._ 53, 1537–1567 (2012). Article  Google Scholar  * Core, D. P., Kesler, S. E. & Essene, E. J. Unusually Cu-rich magmas


associated with giant porphyry copper deposits: evidence from Bingham, Utah. _Geology_ 34, 41–44 (2006). Article  Google Scholar  * Richards, J. P. Postsubduction porphyry Cu-Au and


epithermal Au deposits: Products of remelting of subduction-modified lithosphere. _Geology_ 37, 247–250 (2009). Article  Google Scholar  * Karlstrom, L., Lee, C.-T. A. & Manga, M. The


role of magmatically driven lithospheric thickening on arc front migration. _Geochem. Geophys. Geosyst._ 15, 2655–2675 (2014). Article  Google Scholar  * Cao, M. et al. Physicochemical


processes in the magma chamber under the Black Mountain porphyry Cu-Au deposit, Philippines: Insights from mineral chemistry and implications for mineralization. _Econ. Geol._ 113, 63–82


(2018). Article  Google Scholar  * Dugmore, M. A., Leaman, P. W. & Philip, R. Discovery of the Mt Bini porphyry copper-gold-molybdenum deposit in the Owen Stanley Ranges, Papua New


Guinea—A geochemical case history. _J. Geochem. Explor._ 57, 89–100 (1996). Article  Google Scholar  * Olson, N. H., Dilles, J. H., Kent, A. J. R. & Lang, J. R. Geochemistry of the


Cretaceous Kaskanak batholith and genesis of the Pebble porphyry Cu-Au-Mo deposit, southwest Alaska. _Am. Mineral._ 102, 1597–1621 (2017). Article  Google Scholar  * Shinohara, H. &


Hedenquist, J. W. Constraints on magma degassing beneath the Far Southeast porphyry Cu–Au deposit, Philippines. _J. Petrol._ 38, 1741–1752 (1997). Article  Google Scholar  * van Dongen, M.,


Weinberg, R. F., Tomkins, A. G., Armstrong, R. A. & Woodhead, J. D. Recycling of Proterozoic crust in Pleistocene juvenile magma and rapid formation of the Ok Tedi porphyry Cu–Au


deposit, Papua New Guinea. _Lithos_ 114, 282–292 (2010). Article  Google Scholar  * Hao, H. D., Campbell, I. H., Park, J. W. & Cooke, D. R. Platinum-group element geochemistry used to


determine Cu and Au fertility in the Northparkes igneous suites, New South Wales, Australia. _Geochim. Cosmochim. Acta_ 216, 372–392 (2017). Article  Google Scholar  * Crocket, J. H., Fleet,


M. E. & S, W. E. Implications of composition for experimental partitioning of platinum-group elements and gold between sulfide liquid and basalt melt: The significance of nickel


content. _Geochim. Cosmochim. Acta_ 61, 4139–4149 (1997). Article  Google Scholar  * Crocket, J. H. PGE in fresh basalt, hydrothermal alteration products, and volcanic incrustations of


Kilauea volcano, Hawaii. _Geochim. Cosmochim. Acta_ 64, 1791–1807 (2000). Article  Google Scholar  * Park, J. W., Campbell, I. H. & Kim, J. Abundances of platinum group elements in


native sulfur condensates from the Niuatahi-Motutahi submarine volcano, Tonga rear arc: Implications for PGE mineralization in porphyry deposits. _Geochim. Cosmochim. Acta_ 174, 236–246


(2016). Article  Google Scholar  * Cocker, H. _Platinum Group Elements: Indicators of Sulfide Saturation in Intermediate to Felsic Magmatic Systems and Implications for Porphyry Deposit


Formation_. PhD thesis, Australian National University (2016). * Halter, W. E., Heinrich, C. A. & Pettke, T. Magma evolution and the formation of porphyry Cu–Au ore fluids: evidence from


silicate and sulfide melt inclusions. _Miner. Deposita_ 39, 845–863 (2005). Article  Google Scholar  * Halter, W. E., Pettke, T. & Heinrich, C. A. The origin of Cu/Au ratios in


porphyry-type ore deposits. _Science_ 296, 1844–1846 (2002). Article  Google Scholar  * Keith, J. D. et al. The role of magmatic sulfides and mafic alkaline magmas in the Bingham and Tintic


mining districts, Utah. _J. Petrol._ 38, 1679–1690 (1997). Article  Google Scholar  * Larocque, A. C. L., Stimac, J. A., Keith, J. D. & Huminicki, M. A. E. Evidence for open-system


behavior in immiscible Fe–S–O liquids in silicate magmas: Implications for contributions of metals and sulfur to ore-forming fluids. _Can. Mineral._ 38, 1233–1249 (2000). Article  Google


Scholar  * Nadeau, O., Williams-Jones, A. E. & Stix, J. Sulphide magma as a source of metals in arc-related magmatic hydrothermal ore fluids. _Nat. Geosci._ 3, 501–505 (2010). Article 


Google Scholar  * Reekie, C. D. J. et al. Sulfide resorption during crustal ascent and degassing of oceanic plateau basalts. _Nat. Commun._ 10, 82 (2019). Article  Google Scholar  * Stavast,


W. J. A. et al. The fate of magmatic sulfides during intrusion or eruption, Bingham and Tintic districts, Utah. _Econ. Geol._ 101, 329–345 (2006). Article  Google Scholar  * Yao, Z. &


Mungall, J. E. Flotation mechanism of sulphide melt on vapour bubbles in partially molten magmatic systems. _Earth Planet. Sci. Lett._ 542, 116298 (2020). Article  Google Scholar  * Barnes,


S. J., Le Vaillant, M., Godel, B. & Lesher, C. M. Droplets and bubbles: solidification of sulphide-rich vapour-saturated orthocumulates in the Norilsk-Talnakh Ni–Cu–PGE ore-bearing


Intrusions. _J. Petrol._ 60, 269–300 (2018). Article  Google Scholar  * Le Vaillant, M., Barnes, S. J., Mungall, J. E. & Mungall, E. L. Role of degassing of the Noril’sk nickel deposits


in the Permian–Triassic mass extinction event. _Proc. Natl Acad. Sci. USA_ 114, 2485–2490 (2017). Article  Google Scholar  * Candela, P. A. A review of shallow, ore-related granites:


textures, volatiles, and ore metals. _J. Petrol._ 38, 1619–1633 (1997). Article  Google Scholar  * Murakami, H. et al. The relation between Cu/Au ratio and formation depth of porphyry-style


Cu–Au ± Mo deposits. _Miner. Deposita_ 45, 11–21 (2010). Article  Google Scholar  * D’Angelo, M. et al. Petrogenesis and magmatic evolution of the Guichon Creek batholith: Highland Valley


porphyry Cu ± (Mo) district, south-central British Columbia. _Econ. Geol._ 112, 1857–1888 (2017). Article  Google Scholar  * Dilles, J. H. Petrology of the Yerington Batholith, Nevada;


evidence for evolution of porphyry copper ore fluids. _Econ. Geol._ 82, 1750–1789 (1987). Article  Google Scholar  * Schöpa, A., Annen, C., Dilles, J. H., Sparks, R. S. J. & Blundy, J.


D. Magma emplacement rates and porphyry copper deposits: Thermal modeling of the Yerington batholith, Nevada. _Econ. Geol._ 112, 1653–1672 (2017). Article  Google Scholar  * Heinrich, C. A.,


Driesner, T., Stefánsson, A. & Seward, T. M. Magmatic vapor contraction and the transport of gold from the porphyry environment to epithermal ore deposits. _Geology_ 32, 761–764 (2004).


Article  Google Scholar  * Kay, S. M., Mpodozis, C., Tittler, A. & Cornejo, P. Tertiary magmatic evolution of the Maricunga mineral belt in Chile. _Int. Geol. Rev._ 36, 1079–1112


(1994). Article  Google Scholar  * Vila, T. & Sillitoe, R. H. Gold-rich porphyry systems in the Maricunga belt, northern Chile. _Econ. Geol._ 86, 1238–1260 (1991). Article  Google


Scholar  * Leys, C. A. et al. in _Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe_ Vol. 16 (Society of Economic Geologists, 2012). *


Garwin, S. The geological characteristics, geochemical signature and geophysical expression of porphyry copper-(gold) deposits in the circum-Pacific region. _ASEG Ext. Abstr._ 2019, 1–4


(2019). Google Scholar  * Grondahl, C. & Zajacz, Z. Magmatic controls on the genesis of porphyry Cu–Mo–Au deposits: The Bingham Canyon example. _Earth Planet. Sci. Lett._ 480, 53–65


(2017). Article  Google Scholar  * Holliday, J. R. et al. Porphyry gold–copper mineralisation in the Cadia district, eastern Lachlan Fold Belt, New South Wales, and its relationship to


shoshonitic magmatism. _Miner. Deposita_ 37, 100–116 (2002). Article  Google Scholar  * Jensen, E. P., Barton, M. D., Hagemann, S. G. & Brown, P. E. in _Gold_ Vol. 13 (Society of


Economic Geologists, 2000). * Sillitoe, R. H., Hagemann, S. G. & Brown, P. E. in _Gold_ Vol. 13 (Society of Economic Geologists, 2000). * Wainwright, A. J., Tosdal, R. M., Wooden, J. L.,


Mazdab, F. K. & Friedman, R. M. U–Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu–Au district, southern


Mongolia. _Gondwana Res._ 19, 764–787 (2011). Article  Google Scholar  * Rock, N. M. S. & Groves, D. I. Do lamprophyres carry gold as well as diamonds? _Nature_ 332, 253–255 (1988).


Article  Google Scholar  * Zajacz, Z. et al. Alkali metals control the release of gold from volatile-rich magmas. _Earth Planet. Sci. Lett._ 297, 50–56 (2010). Article  Google Scholar  *


Holwell, D. A. et al. A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism. _Nat. Commun._ 10, 3511 (2019). Article  Google Scholar  *


Heinrich, C. A. & Candela, P. A. in _Treatise on Geochemistry_ 2nd edn (eds Holland, H. D. & Turekian, K. K.) 1–28 (Elsevier, 2014). * Landtwing, M. R. et al. The Bingham Canyon


porphyry Cu-Mo-Au deposit. III. Zoned copper-gold ore deposition by magmatic vapor expansion. _Econ. Geol._ 105, 91–118 (2010). Article  Google Scholar  * Bodnar, R. J., Lecumberri-Sanchez,


P., Moncada, D. & Steele-MacInnis, M. in _Treatise on Geochemistry_ 2nd edn (eds Holland, H. D. & Turekian, K. K.) 119–142 (Elsevier, 2014). * Shinohara, H. Exsolution of immiscible


vapor and liquid phases from a crystallizing silicate melt: Implications for chlorine and metal transport. _Geochim. Cosmochim. Acta_ 58, 5215–5221 (1994). Article  Google Scholar  *


Webster, J. D. The exsolution of magmatic hydrosaline chloride liquids. _Chem. Geol._ 210, 33–48 (2004). Article  Google Scholar  * Guo, H. & Audétat, A. Transfer of volatiles and metals


from mafic to felsic magmas in composite magma chambers: An experimental study. _Geochim. Cosmochim. Acta_ 198, 360–378 (2017). Article  Google Scholar  * Zajacz, Z., Candela, P. A.,


Piccoli, P. M., Wälle, M. & Sanchez-Valle, C. Gold and copper in volatile saturated mafic to intermediate magmas: Solubilities, partitioning, and implications for ore deposit formation.


_Geochim. Cosmochim. Acta_ 91, 140–159 (2012). Article  Google Scholar  * Candela, P. A. & Holland, H. D. The partitioning of copper and molybdenum between silicate melts and aqueous


fluids. _Geochim. Cosmochim. Acta_ 48, 373–380 (1984). Article  Google Scholar  * Simon, A. C. et al. Gold partitioning in melt-vapor-brine systems. _Geochim. Cosmochim. Acta_ 69, 3321–3335


(2005). Article  Google Scholar  * Simon, A. C., Pettke, T., Candela, P. A., Piccoli, P. M. & Heinrich, C. A. Copper partitioning in a melt–vapor–brine–magnetite–pyrrhotite assemblage.


_Geochim. Cosmochim. Acta_ 70, 5583–5600 (2006). Article  Google Scholar  * Williams, T. J., Candela, P. A. & Piccoli, P. M. The partitioning of copper between silicate melts and


two-phase aqueous fluids: An experimental investigation at 1 kbar, 800 °C and 0.5 kbar, 850 °C. _Contrib. Mineral. Petrol._ 121, 388–399 (1995). Article  Google Scholar  * Rusk, B. G., Reed,


M. H. & Dilles, J. H. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. _Econ. Geol._ 103, 307–334 (2008).


Article  Google Scholar  * Frank, M. R., Simon, A. C., Pettke, T., Candela, P. A. & Piccoli, P. M. Gold and copper partitioning in magmatic-hydrothermal systems at 800 °C and 100 MPa.


_Geochim. Cosmochim. Acta_ 75, 2470–2482 (2011). Article  Google Scholar  * Lerchbaumer, L. & Audétat, A. High Cu concentrations in vapor-type fluid inclusions: An artifact? _Geochim.


Cosmochim. Acta_ 88, 255–274 (2012). DISCOVERED THAT THE CONVENTIONAL VAPOUR–BRINE PARTITION COEFFICIENTS OF CU INFERRED FROM NATURAL FLUID INCLUSIONS ARE AN ARTEFACT, SHOWING CU’S HIGHER


AFFINITY FOR BRINE THAN VAPOUR. Article  Google Scholar  * Zajacz, Z., Candela, P. A. & Piccoli, P. M. The partitioning of Cu, Au and Mo between liquid and vapor at magmatic temperatures


and its implications for the genesis of magmatic-hydrothermal ore deposits. _Geochim. Cosmochim. Acta_ 207, 81–101 (2017). Article  Google Scholar  * Driesner, T. & Heinrich, C. A. The


system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. _Geochim. Cosmochim. Acta_ 71,


4880–4901 (2007). Article  Google Scholar  * Gregory, M. J. A fluid inclusion and stable isotope study of the Pebble porphyry copper-gold-molybdenum deposit, Alaska. _Ore Geol. Rev._ 80,


1279–1303 (2017). Article  Google Scholar  * Crerar, D. A. & Barnes, H. L. Ore solution chemistry; V, Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at


200 degrees to 350 degrees C. _Econ. Geol._ 71, 772–794 (1976). Article  Google Scholar  * Landtwing, M. R. et al. Copper deposition during quartz dissolution by cooling


magmatic–hydrothermal fluids: the Bingham porphyry. _Earth Planet. Sci. Lett._ 235, 229–243 (2005). Article  Google Scholar  * Henley, R. W. & Berger, B. R. Nature’s refineries — Metals


and metalloids in arc volcanoes. _Earth Sci. Rev._ 125, 146–170 (2013). Article  Google Scholar  * Giggenbach, W. F. Redox processes governing the chemistry of fumarolic gas discharges from


White Island, New Zealand. _Appl. Geochem._ 2, 143–161 (1987). Article  Google Scholar  * Gustafson, L. B. & Hunt, J. P. The porphyry copper deposit at El Salvador, Chile. _Econ. Geol._


70, 857–912 (1975). Article  Google Scholar  * Li, Y. & Audétat, A. Gold solubility and partitioning between sulfide liquid, monosulfide solid solution and hydrous mantle melts:


Implications for the formation of Au-rich magmas and crust–mantle differentiation. _Geochim. Cosmochim. Acta_ 118, 247–262 (2013). Article  Google Scholar  * Liu, Y. & Brenan, J.


Partitioning of platinum-group elements (PGE) and chalcogens (Se, Te, As, Sb, Bi) between monosulfide-solid solution (MSS), intermediate solid solution (ISS) and sulfide liquid at controlled


fO2–fS2 conditions. _Geochim. Cosmochim. Acta_ 159, 139–161 (2015). Article  Google Scholar  * Costa, S. et al. Tracking metal evolution in arc magmas: Insights from the active volcano of


La Fossa, Italy. _Lithos_ 380–381, 105851 (2021). Article  Google Scholar  * Wang, Z. et al. Evolution of copper isotopes in arc systems: Insights from lavas and molten sulfur in Niuatahi


volcano, Tonga rear arc. _Geochim. Cosmochim. Acta_ 250, 18–33 (2019). Article  Google Scholar  * Rottier, B., Audétat, A., Koděra, P. & Lexa, J. Magmatic evolution of the mineralized


Štiavnica volcano (Central Slovakia): Evidence from thermobarometry, melt inclusions, and sulfide inclusions. _J. Volcanol. Geotherm. Res._ 401, 106967 (2020). Article  Google Scholar  *


Rottier, B., Audétat, A., Koděra, P. & Lexa, J. Origin and evolution of magmas in the porphyry Au-mineralized Javorie volcano (Central Slovakia): Evidence from thermobarometry, melt


Inclusions and sulfide inclusions. _J. Petrol._ 60, 2449–2482 (2020). Article  Google Scholar  * Proffett, J. M. High Cu grades in porphyry Cu deposits and their relationship to emplacement


depth of magmatic sources. _Geology_ 37, 675–678 (2009). Article  Google Scholar  * Hou, Z. et al. A genetic linkage between subduction- and collision-related porphyry Cu deposits in


continental collision zones. _Geology_ 43, 247–250 (2015). Article  Google Scholar  * Hou, Z. et al. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in


the Tibetan Orogen. _Ore Geol. Rev._ 36, 25–51 (2009). Article  Google Scholar  * Hou, Z. et al. Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu


systems in Tibet. _Miner. Deposita_ 48, 173–192 (2013). Article  Google Scholar  * Blanks, D. E. et al. Fluxing of mantle carbon as a physical agent for metallogenic fertilization of the


crust. _Nat. Commun._ 11, 4342 (2020). Article  Google Scholar  * Singer, D. A., Berger, V. I. & Moring, B. C. Porphyry copper deposits of the world: Database and grade and tonnage


models, 2008. U.S. Geological Survey open-file report 2008-1155. _USGS_ https://pubs.usgs.gov/of/2008/1155/ (2008). * Clark, A. H., Whiting, B. H., Hodgson, C. J. & Mason, R. in _Giant


Ore Deposits_ (Society of Economic Geologists, 1993). * Bai, Z.-J., Zhong, H., Hu, R.-Z. & Zhu, W.-G. Early sulfide saturation in arc volcanic rocks of southeast China: Implications for


the formation of co-magmatic porphyry–epithermal Cu–Au deposits. _Geochim. Cosmochim. Acta_ 280, 66–84 (2020). Article  Google Scholar  * Huang, M.-L. et al. The role of early sulfide


saturation in the formation of the Yulong porphyry Cu-Mo deposit: evidence from mineralogy of sulfide melt inclusions and platinum-group element geochemistry. _Ore Geol. Rev._ 124, 103644


(2020). Article  Google Scholar  * Park, J.-W., Campbell, I. H. & Eggins, S. M. Enrichment of Rh, Ru, Ir and Os in Cr spinels from oxidized magmas: Evidence from the Ambae volcano,


Vanuatu. _Geochim. Cosmochim. Acta_ 78, 28–50 (2012). Article  Google Scholar  * Dale, C. W., Macpherson, C. G., Pearson, D. G., Hammond, S. J. & Arculus, R. J. Inter-element


fractionation of highly siderophile elements in the Tonga Arc due to flux melting of a depleted source. _Geochim. Cosmochim. Acta_ 89, 202–225 (2012). Article  Google Scholar  Download


references ACKNOWLEDGEMENTS J.-W.P. was supported by a fund from the Korea Government Ministry of Science and ICT (NRF-2019R1A2C1009809). I.H.C. was supported by an Australian Research


Council Discovery Grant (DP17010340). H.H. acknowledges the support from Brain Pool Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT


(2019H1D3A1A01102977). M.C. acknowledges support from the Swiss National Science Foundation (200020_162415, 200021_169032). The authors thank J. H. Seo for their discussion and comments on


the manuscript. AUTHOR INFORMATION AUTHORS AND AFFILIATIONS * School of Earth and Environmental Sciences, Seoul National University, Seoul, Republic of Korea Jung-Woo Park * Research


Institute of Oceanography, Seoul National University, Seoul, Republic of Korea Jung-Woo Park & Hongda Hao * Research School of Earth Sciences, Australian National University, Canberra,


Australia Ian H. Campbell * Department of Earth Sciences, University of Geneva, Geneva, Switzerland Massimo Chiaradia * Department of Earth, Environmental and Planetary Sciences, Rice


University, Houston, TX, USA Cin-Ty Lee Authors * Jung-Woo Park View author publications You can also search for this author inPubMed Google Scholar * Ian H. Campbell View author


publications You can also search for this author inPubMed Google Scholar * Massimo Chiaradia View author publications You can also search for this author inPubMed Google Scholar * Hongda Hao


View author publications You can also search for this author inPubMed Google Scholar * Cin-Ty Lee View author publications You can also search for this author inPubMed Google Scholar


CONTRIBUTIONS J.-W.P., I.H.C. and M.C. substantially contributed to the discussion and writing of the manuscript. H.H. and C.-T.L. contributed to the discussion of the content and reviewed


the manuscript before submission. H.H. and M.C. compiled the data sets and drafted the figures. CORRESPONDING AUTHOR Correspondence to Jung-Woo Park. ETHICS DECLARATIONS COMPETING INTERESTS


The authors declare no competing interests. ADDITIONAL INFORMATION PEER REVIEW INFORMATION _Nature Reviews Earth & Environment_ thanks E. Melekhova, J. Mungall and J. Dilles (who


co-reviewed with M. Campbell) for their contribution to the peer review of this work. PUBLISHER’S NOTE Springer Nature remains neutral with regard to jurisdictional claims in published maps


and institutional affiliations. SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION GLOSSARY * Sulfide saturation Silicate melt becomes saturated with a sulfide phase, normally an immiscible


sulfide melt, and segregates from the silicate melt. * Hydrothermal system A system that redistributes energy and mass by circulation of hot, water-rich fluid. * Differentiation Processes


that lead to changes in magma composition, such as fractional crystallization, crustal assimilation, recharge and mixing. * Fluid exsolution A process through which water-rich fluid


separates from silicate melt. * Metasomatized Metamorphic processes that change the chemical composition of a rock in a pervasive manner by interaction with aqueous fluids. * Chalcophile


elements Elements that have a high affinity with sulfur and form sulfide minerals or partition strongly into immiscible sulfide melts. * Monosulfide solid solution A high-temperature


(>∼600 °C) sulfide phase that is mainly composed of Fe with minor Ni and Cu. * Fractionation Removal and segregation of a mineral from a melt. * Oxygen fugacity (_f_O2) Partial pressure


of oxygen in a given environment. * Cumulates Igneous rocks formed by accumulation of crystals from magma. * Adakite An intermediate to felsic volcanic rock that has geochemical signatures


of magma thought to be produced by partial melting of altered basalt. * Subduction erosion Removal of upper plate materials in active continental margins. * Delamination Detachment of lower


crust and/or mantle lithosphere from the continental crust. RIGHTS AND PERMISSIONS Reprints and permissions ABOUT THIS ARTICLE CITE THIS ARTICLE Park, JW., Campbell, I.H., Chiaradia, M. _et


al._ Crustal magmatic controls on the formation of porphyry copper deposits. _Nat Rev Earth Environ_ 2, 542–557 (2021). https://doi.org/10.1038/s43017-021-00182-8 Download citation *


Accepted: 21 May 2021 * Published: 06 July 2021 * Issue Date: August 2021 * DOI: https://doi.org/10.1038/s43017-021-00182-8 SHARE THIS ARTICLE Anyone you share the following link with will


be able to read this content: Get shareable link Sorry, a shareable link is not currently available for this article. Copy to clipboard Provided by the Springer Nature SharedIt


content-sharing initiative