Inteligencia artificial: ¿villano o héroe de los crímenes financieros?
- Select a language for the TTS:
- Spanish Female
- Spanish Male
- Spanish Latin American Female
- Spanish Latin American Male
- Language selected: (auto detect) - ES

Play all audios:

Desde hace décadas los delitos financieros impactan en instituciones y clientes de todo el mundo, ocasionando cuantiosas pérdidas monetarias. Crímenes como el robo de identidad, el lavado de
dinero, la clonación de tarjetas de crédito, el fraude corporativo y el financiamiento al terrorismo se encuentran en la agenda diaria de los departamentos de cumplimiento y riesgo de los
bancos, de las entidades de seguros, instituciones de pensiones e inversiones. MUCHOS DELITOS, DISTINTAS FORMAS DE DELINQUIR Los delitos financieros pueden ser cometidos por clientes de la
institución que depositan en sus cuentas bancarias recursos de procedencia ilícita para distribuirlos a otras cuentas y, finalmente, utilizarlos en actividades legales (lavado de dinero).
También los empleados de la institución pueden _compincharse_ con clientes para, a cambio de una comisión, conceder préstamos o hipotecas sin que cumplan los requisitos necesarios. Hay
criminales tecnológicos, que no son ni clientes ni empleados, que pueden _hackear_ cuentas y obtener los datos bancarios de los clientes para desviar recursos y hacer transacciones no
autorizadas por el titular. Los dueños de empresas y gerentes de negocios podrían manipular sus estados financieros para mostrar una posición financiera que no es real. Las personas
jurídicas (empresas) pueden incurrir en la creación de sociedades fantasma, con varios representantes legales y domicilios comunes, para realizar actividades de evasión fiscal. MÉTODOS
TRADICIONALES PARA LA DETECCIÓN DE CRIMEN FINANCIERO La detección del crimen financiero es una actividad que se ejecuta una vez que el dinero se ha integrado en los sistemas. Usualmente esta
detección se hace a nivel de transacción, cuando un cliente es sospechoso de transacciones relacionadas con el crimen. No obstante, no todas las transacciones de un mismo cliente tienen por
qué relacionarse con alguna actividad criminal. Las transacciones realizadas pueden ser de depósito, retiro, pago de créditos, compra de acciones, recepción del pago de la nómina,
transferencias internacionales, aportaciones a sus cuentas de ahorro y pensión, etc. Estos movimientos se cuentan por millones y algunos podrían estar relacionados con malas prácticas. UN
SISTEMA LÓGICO DE DETECCIÓN La revisión manual e individual de todas estas transacciones por el departamento de cumplimiento y control es una tarea muy demandante de tiempo y recursos. Para
cumplir con la responsabilidad de detección, las instituciones financieras han implementado sistemas automatizados. Por ejemplo, para el caso de lavado de dinero y de actividad de empresas
fantasmas, las instituciones usan sistemas automatizados de reglas. Estas reglas se componen de un conjunto de condiciones que esbozan un perfil sospechoso de transacciones. Las condiciones
se unen mediante operadores lógicos como _Y_ u _O_. Por ejemplo, podemos definir un perfil de transacción sospechosa si el cliente ocupa un cargo político y la cuantía de la transacción
supera los 10 000 dólares o los 10 000 euros. Este perfil sospechoso tiene dos condiciones que deben cumplirse al mismo tiempo: * “El cliente ocupa un cargo político”. * “La cuantía de la
transacción supera los 10 000 dólares”. La necesidad de que ambas condiciones se cumplan al mismo tiempo se resuelve uniéndolas con _Y_. Estas reglas se programan en sistemas automatizados y
pueden tener tantas condiciones y operadores lógicos como se desee. La desventaja de estos sistemas de reglas es la gran cantidad de falsos positivos que arrojan, debido a que no se adaptan
a los cambios de conducta de los criminales. LA TECNOLOGÍA COMO POTENCIADOR DEL CRIMEN FINANCIERO La implantación de nuevas tecnologías para ofrecer al cliente opciones para realizar
transacciones y acceder a productos financieros ha dificultado el trabajo de los sistemas tradicionales de detección de crímenes bancarios. Si anteriormente un cliente tenía que asistir
presencialmente a una sucursal para hacer el depósito de un cheque, ahora las aplicaciones móviles le permiten escanearlo de forma remota y tener acceso al depósito en las siguientes 24
horas. Esta facilidad ha hado pie al escaneo remoto de cheques falsos básicamente por dos métodos: * Cheques con información inventada. * Cheques falsos con información de cheques legítimos
ya cobrados. LA IA COMO ALTERNATIVA A LOS MÉTODOS TRADICIONALES El criminal es un individuo inteligente que utiliza ciertas técnicas para cometer un crimen. Es capaz de aprender de los
errores, adaptarse y cambiar su patrón de ejecución. Ante tal problemática, las instituciones necesitan responder con herramientas igual de inteligentes con capacidad de aprendizaje y
adaptación. Es aquí donde la inteligencia artificial aparece como opción factible. Las metodologías de IA, que simulan el funcionamiento fisiológico del cerebro humano, y tratan de replicar
sus procesos de aprendizaje, han mostrado excelente precisión en la detección de fraudes con tarjeta de crédito y cheques. Entre ellos: Por otro lado, las técnicas de agrupamiento
(_clustering_) y las redes neuronales han contribuido a una significativa disminución de los costes de investigación y falsos positivos en la detección de lavado de dinero y empresas
fantasma en los sistemas financieros. La inteligencia artificial ha llegado para quedarse y ser adoptada por las empresas que estén dispuestas a dar el salto tecnológico. Esto exige la
inversión en nuevas plataformas en la nube y licencias de _software_ diseñadas para el análisis eficiente de datos.